"Cisco Annual Internet Report (2018–2023) White Paper," Cisco, Mar 9 2020. Accessed: Jun 21, 2022. [Online]. https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
R. Nagarajan et al., Large-scale photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 11, 50–65 (2005)
Article
ADS
Google Scholar
J. Hou, G. Situ, Image encryption using spatial nonlinear optics. eLight 2, 1–10 (2022)
Article
Google Scholar
L. Li, H. Zhao, C. Liu, L. Li, T.J. Cui, Intelligent metasurfaces: control, communication and computing. eLight 2, 1–24 (2022)
Article
Google Scholar
D.A. Miller, Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166–1185 (2009)
Article
Google Scholar
S. Arafin, L.A. Coldren, Advanced InP photonic integrated circuits for communication and sensing. IEEE J. Sel. Top. Quantum Electron. 24, 1–12 (2017)
Article
Google Scholar
P. Dumon et al., Low-loss SOI photonic wires and ring resonators fabricated with deep UV lithography. IEEE Photon. Technol. Lett. 16, 1328–1330 (2004)
Article
ADS
Google Scholar
A. Liu et al., High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15, 660–668 (2007)
Article
ADS
Google Scholar
L. Vivien et al., High speed and high responsivity germanium photodetector integrated in a Silicon-On-Insulator microwaveguide. Opt. Express 15, 9843–9848 (2007)
Article
ADS
Google Scholar
J. Liu et al., Tensile-strained, n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express 15, 11272–11277 (2007)
Article
ADS
Google Scholar
Z. Wang et al., Novel light source integration approaches for silicon photonics. Laser Photonics Rev. 11, 1700063 (2017)
Article
ADS
Google Scholar
Z. Chen, M. Segev, Highlighting photonics: looking into the next decade. ELight 1, 1–12 (2021)
Article
Google Scholar
Y. Han, H. Park, J. Bowers, K.M. Lau, Recent advances in light sources on silicon. Adv. Opt. Photonics 14, 404–454 (2022)
Article
Google Scholar
N. Li et al., Integrated lasers on silicon at communication wavelength: a progress review. Adv. Opt. Mater. (2022)
Y. Wan, J. Norman, S. Liu, A. Liu, J.E. Bowers, Quantum dot lasers and amplifiers on silicon: recent advances and future developments. IEEE Nanotechnol. Mag. 15, 8–22 (2021)
Article
Google Scholar
Z. Zhou, B. Yin, J. Michel, On-chip light sources for silicon photonics. Light Sci. Appl. 4, e358–e358 (2015)
Article
ADS
Google Scholar
P. Kennedy, Intel Tofino2 next-gen programmable switch detailed, Intel, 2020. [Online]. https://www.servethehome.com/intel-tofino2-next-gen-programmable-switch-detailed/. Accessed 21 Jun 2022.
J.W. Wang et al., Multidimensional quantum entanglement with large-scale integrated optics. Science 360, 285–291 (2018)
Article
ADS
MathSciNet
MATH
Google Scholar
K. Wu, H. Zhang, Y. Chen, Q. Luo, K. Xu, All-silicon microdisplay using efficient hot-carrier electroluminescence in standard 0.18μm CMOS technology. IEEE Electron Device Lett. 42, 541–544 (2021)
Article
ADS
Google Scholar
G. Zhang et al., An integrated silicon photonic chip platform for continuous-variable quantum key distribution. Nat. Photonics 13, 839–842 (2019)
Article
ADS
Google Scholar
C. Xiang et al., Laser soliton microcombs heterogeneously integrated on silicon. Science 373, 99–103 (2021)
Article
ADS
Google Scholar
Y. Shen et al., Deep learning with coherent nanophotonic circuits. Nat. Photonics 11, 441–446 (2017)
Article
ADS
Google Scholar
T. M. Josue Lopez, Samuel Kim, MIT spinoff building new solid-state lidar-on-a-chip system, IEEE Spectrum, 01 Dec 2020. Accessed: 20 Jun, 2022. [Online]. https://spectrum.ieee.org/kyber-photonics-solid-state-lidar-on-a-chip-system
C. Xiong et al., Silicon photonic integrated circuit for on-chip spectroscopic gas sensing. In Silicon Photonics XIV, (2019), p. 31–36
A. Cullis, L.T. Canham, P. Calcott, The structural and luminescence properties of porous silicon. J. Appl. Phys. 82, 909–965 (1997)
Article
ADS
Google Scholar
E.M. Fadaly et al., Direct-bandgap emission from hexagonal Ge and SiGe alloys. Nature 580, 205–209 (2020)
Article
ADS
Google Scholar
R.J. Walters, G.I. Bourianoff, H.A. Atwater, Field-effect electroluminescence in silicon nanocrystals. Nat. Mater. 4, 143–146 (2005)
Article
ADS
Google Scholar
L. Pavesi, L. Dal Negro, C. Mazzoleni, G. Franzo, D.F. Priolo, Optical gain in silicon nanocrystals. Nature 408, 440–444 (2000)
Article
ADS
Google Scholar
H. Rong et al., Low-threshold continuous-wave Raman silicon laser. Nat. Photonics 1, 232–237 (2007)
Article
ADS
Google Scholar
O. Boyraz, B. Jalali, Demonstration of directly modulated silicon Raman laser. Opt. Express 13, 796–800 (2005)
Article
ADS
Google Scholar
Y. Zhang, K. Zhong, H.K. Tsang, Raman lasing in multimode silicon racetrack resonators. Laser Photonics Rev. 15, 2000336 (2021)
Article
ADS
Google Scholar
S.-L. Cheng et al., Room temperature 1.6 µm electroluminescence from Ge light emitting diode on Si substrate. Opt. Express 17, 10019–10024 (2009)
Article
ADS
Google Scholar
X. Sun, J. Liu, L.C. Kimerling, J. Michel, Room-temperature direct bandgap electroluminesence from Ge-on-Si light-emitting diodes. Opt. Lett. 34, 1198–1200 (2009)
Article
ADS
Google Scholar
X. Sun, J. Liu, L.C. Kimerling, J. Michel, Toward a germanium laser for integrated silicon photonics. IEEE J. Sel. Top. Quantum Electron. 16, 124–131 (2009)
ADS
Google Scholar
J. Michel, J. Liu, L.C. Kimerling, High-performance Ge-on-Si photodetectors. Nat. Photonics 4, 527–534 (2010)
Article
ADS
Google Scholar
C.G. Van de Walle, Band lineups and deformation potentials in the model-solid theory. Phys. Rev. B 39, 1871 (1989)
Article
ADS
Google Scholar
J.R. Jain, A. Hryciw, T.M. Baer, D.A. Miller, M.L. Brongersma, R.T. Howe, A micromachining-based technology for enhancing germanium light emission via tensile strain. Nat. Photonics 6, 398–405 (2012)
Article
ADS
Google Scholar
R.E. Camacho-Aguilera et al., An electrically pumped germanium laser. Opt. Express 20, 11316–11320 (2012)
Article
ADS
Google Scholar
S. Gupta, B. Magyari-Köpe, Y. Nishi, K.C. Saraswat, Achieving direct band gap in germanium through integration of Sn alloying and external strain. J. Appl. Phys. 113, 073707 (2013)
Article
ADS
Google Scholar
S. Wirths et al., Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photonics 9, 88–92 (2015)
Article
ADS
Google Scholar
Y. Zhou et al., Electrically injected GeSn lasers on Si operating up to 100 K. Optica 7, 924–928 (2020)
Article
ADS
Google Scholar
A.Y. Liu, J. Bowers, Photonic integration with epitaxial III–V on silicon. IEEE J. Sel. Top. Quantum Electron. 24, 1–12 (2018)
Google Scholar
G. Kurczveil, P. Pintus, M.J. Heck, J.D. Peters, J.E. Bowers, Characterization of insertion loss and back reflection in passive hybrid silicon tapers. IEEE Photonics J 5, 6600410–6600410 (2013)
Article
ADS
Google Scholar
W. Q. Wei et al., Monolithic integration of embedded III–V lasers on SOI. arXiv preprint arXiv:2207.07914 (2022)
G. Roelkens, D. Van Thourhout, R. Baets, R. Nötzel, M. Smit, Laser emission and photodetection in an InP/InGaAsP layer integrated on and coupled to a Silicon-on-Insulator waveguide circuit. Opt. Express 14, 8154–8159 (2006)
Article
ADS
Google Scholar
S. Keyvaninia et al., Heterogeneously integrated III–V/silicon distributed feedback lasers. Opt. Lett. 38, 5434–5437 (2013)
Article
ADS
Google Scholar
T. Hong et al., A selective-area metal bonding InGaAsP–Si laser. IEEE Photon. Technol. Lett. 22, 1141–1143 (2010)
Article
ADS
Google Scholar
A. Plößl, G. Kräuter, Wafer direct bonding: tailoring adhesion between brittle materials. Mater. Sci. Eng. R Rep. 25, 1–88 (1999)
Article
Google Scholar
A.W. Fang, H. Park, O. Cohen, R. Jones, M.J. Paniccia, J.E. Bowers, Electrically pumped hybrid AlGaInAs-silicon evanescent laser. Opt. Express 14, 9203–9210 (2006)
Article
ADS
Google Scholar
A.W. Fang, E. Lively, Y.-H. Kuo, D. Liang, J.E. Bowers, A distributed feedback silicon evanescent laser. Opt. Express 16, 4413–4419 (2008)
Article
ADS
Google Scholar
A.W. Fang et al., A distributed Bragg reflector silicon evanescent laser. IEEE Photon. Technol. Lett. 20, 1667–1669 (2008)
Article
ADS
Google Scholar
M.N. Sysak, J.O. Anthes, J.E. Bowers, O. Raday, R. Jones, Integration of hybrid silicon lasers and electroabsorption modulators. Opt. Express 16, 12478–12486 (2008)
Article
ADS
Google Scholar
Intel details its 800-gigabit DR8 optical module, Gazettabyte, Jun 29 2021. [Online]. https://www.gazettabyte.com/home/2021/6/29/intel-details-its-800-gigabit-dr8-optical-module.html. Accessed 21 Jun 21 2022
M. He et al., High-performance hybrid silicon and lithium niobate Mach-Zehnder modulators for 100 Gbit s−1 and beyond. Nat. Photonics 13, 359–364 (2019)
Article
ADS
Google Scholar
S. Ghosh, S. Keyvavinia, W. Van Roy, T. Mizumoto, G. Roelkens, R. Baets, Ce: YIG/Silicon-on-insulator waveguide optical isolator realized by adhesive bonding. Opt. Express 20, 1839–1848 (2012)
Article
ADS
Google Scholar
K.J. Miller, R.F. Haglund, S.M. Weiss, Optical phase change materials in integrated silicon photonic devices. Opt. Mater. Express 8, 2415–2429 (2018)
Article
ADS
Google Scholar
R. Maiti et al., Loss and coupling tuning via heterogeneous integration of MoS 2 layers in silicon photonics. Opt. Mater. Express 9, 751–759 (2019)
Article
ADS
Google Scholar
C. Xiang et al., Narrow-linewidth III–V/Si/Si3N4 laser using multilayer heterogeneous integration. Optica 7, 20–21 (2020)
Article
ADS
Google Scholar
C. Xiang, W. Jin, J.E. Bowers, Silicon nitride passive and active photonic integrated circuits: trends and prospects. Photonics Res. 10, A82–A96 (2022)
Article
Google Scholar
M. Tran et al., Extending the spectrum of fully integrated photonics. arXiv preprint arXiv:2112.02923 (2021)
C. Xiang et al., High-performance lasers for fully integrated silicon nitride photonics. Nat. Commun. 12, 1–8 (2021)
Article
Google Scholar
Q. Yu et al., Heterogeneous photodiodes on silicon nitride waveguides. Opt. Express 28, 14824–14830 (2020)
Article
ADS
Google Scholar
A. Spott et al., Quantum cascade laser on silicon. Optica 3, 545–551 (2016)
Article
ADS
Google Scholar
G. Kurczveil, D. Liang, M. Fiorentino, R.G. Beausoleil, Robust hybrid quantum dot laser for integrated silicon photonics. Opt. Express 24, 16167–16174 (2016)
Article
ADS
Google Scholar
C. Zhang, D. Liang, G. Kurczveil, A. Descos, R.G. Beausoleil, Hybrid quantum-dot microring laser on silicon. Optica 6, 1145–1151 (2019)
Article
ADS
Google Scholar
Y. Wan et al., High speed evanescent quantum-dot lasers on Si. Laser Photonics Rev. 15, 2100057 (2021)
Article
ADS
Google Scholar
J. Duan et al., 1.3-μm reflection insensitive InAs/GaAs quantum dot lasers directly grown on silicon. IEEE Photon. Technol. Lett. 31, 345–348 (2019)
Article
ADS
Google Scholar
D. Liang et al., High-performance quantum-dot distributed feedback laser on silicon for high-speed modulations. Optica 8, 591–593 (2021)
Article
ADS
Google Scholar
M.A. Tran, D. Huang, J. Guo, T. Komljenovic, P.A. Morton, J.E. Bowers, Ring-resonator based widely-tunable narrow-linewidth Si/InP integrated lasers. IEEE J. Sel. Top. Quantum Electron. 26, 1–14 (2019)
Article
Google Scholar
P.A. Morton et al., Integrated coherent tunable laser (ICTL) with ultra-wideband wavelength tuning and sub-100 Hz Lorentzian linewidth. J. Lightwave Technol. 40, 1802–1809 (2022)
Article
ADS
Google Scholar
B. Li et al., Reaching fiber-laser coherence in integrated photonics. Opt. Lett. 46, 5201–5204 (2021)
Article
ADS
Google Scholar
J.C. Norman, D. Jung, Y. Wan, J.E. Bowers, Perspective: the future of quantum dot photonic integrated circuits. APL photonics 3, 030901 (2018)
Article
ADS
Google Scholar
C. Shang et al., Perspectives on advances in quantum dot lasers and integration with Si photonic integrated circuits. ACS Photonics 8, 2555–2566 (2021)
Article
Google Scholar
C. Shang et al., A pathway to thin GaAs virtual substrate on on-axis Si (001) with ultralow threading dislocation density. Phys. Status Solidi A 218, 2000402 (2021)
Article
ADS
Google Scholar
J. Selvidge et al., Reduced dislocation growth leads to long lifetime InAs quantum dot lasers on silicon at high temperatures. Appl. Phys. Lett. 118, 192101 (2021)
Article
ADS
Google Scholar
Y. Wan et al., Optically pumped 1.3 μm room-temperature InAs quantum-dot micro-disk lasers directly grown on (001) silicon. Opt. Lett. 41, 1664–1667 (2016)
Article
ADS
Google Scholar
F. Olsson, M. Xie, S. Lourdudoss, I. Prieto, P.A. Postigo, Epitaxial lateral overgrowth of InP on Si from nano-openings: theoretical and experimental indication for defect filtering throughout the grown layer. J. Appl. Phys. 104, 093112 (2008)
Article
ADS
Google Scholar
Y. Ujiie, T. Nishinaga, Epitaxial lateral overgrowth of GaAs on a Si substrate. Jpn. J. Appl. Phys 28, L337 (1989)
Article
ADS
Google Scholar
A. Lee, Q. Jiang, M. Tang, A. Seeds, H. Liu, Continuous-wave InAs/GaAs quantum-dot laser diodes monolithically grown on Si substrate with low threshold current densities. Opt. Express 20, 22181–22187 (2012)
Article
ADS
Google Scholar
A.Y. Liu et al., Electrically pumped continuous-wave 1.3 μm quantum-dot lasers epitaxially grown on on-axis (001) GaP/Si. Opt. Lett. 42, 338–341 (2017)
Article
ADS
Google Scholar
W. Wei et al., InAs QDs on (111)-faceted Si (001) hollow substrates with strong emission at 1300 nm and 1550 nm. Appl. Phys. Lett. 113, 053107 (2018)
Article
ADS
Google Scholar
S. Chen et al., Electrically pumped continuous-wave 1.3 µm InAs/GaAs quantum dot lasers monolithically grown on on-axis Si (001) substrates. Opt. Express 25, 4632–4639 (2017)
Article
ADS
Google Scholar
D. Jung et al., Recent advances in inas quantum dot lasers grown on on-axis (001) silicon by molecular beam epitaxy. Phys. Status Solidi A 216, 1800602 (2019)
Article
ADS
Google Scholar
C. Shang et al., High-temperature reliable quantum-dot lasers on Si with misfit and threading dislocation filters. Optica 8, 749–754 (2021)
Article
ADS
Google Scholar
Y. Wan et al., 1.3 μm submilliamp threshold quantum dot micro-lasers on Si. Optica 4, 940–944 (2017)
Article
ADS
Google Scholar
S. Liu et al., High-channel-count 20 GHz passively mode-locked quantum dot laser directly grown on Si with 4.1 Tbit/s transmission capacity. Optica 6, 128–134 (2019)
Article
ADS
Google Scholar
Y. Wan et al., Tunable quantum dot lasers grown directly on silicon. Optica 6, 1394–1400 (2019)
Article
ADS
Google Scholar
J. Norman et al., Electrically pumped continuous wave quantum dot lasers epitaxially grown on patterned, on-axis (001) Si. Opt. Express 25, 3927–3934 (2017)
Article
ADS
Google Scholar
A.Y. Liu, S. Srinivasan, J. Norman, A.C. Gossard, J.E. Bowers, Quantum dot lasers for silicon photonics. Photonics Res. 3, B1–B9 (2015)
Article
Google Scholar
Y. Shi et al., Optical pumped InGaAs/GaAs nano-ridge laser epitaxially grown on a standard 300-mm Si wafer. Optica 4, 1468–1473 (2017)
Article
ADS
Google Scholar
Z. Wang et al., Room-temperature InP distributed feedback laser array directly grown on silicon. Nat. Photonics 9, 837–842 (2015)
Article
ADS
Google Scholar
C. Shang. et al., Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light Sci. Appl. 11, 299 (2022)
Article
ADS
Google Scholar
Z. Zhang, J.C. Norman, S. Liu, A. Malik, J.E. Bowers, Integrated dispersion compensated mode-locked quantum dot laser. Photonics Res. 8, 1428–1434 (2020)
Article
Google Scholar
Y. Wan et al., 1.3 µm quantum dot-distributed feedback lasers directly grown on (001) Si. Laser Photonics Rev. 14, 2000037 (2020)
Article
ADS
Google Scholar
J. Wang, F. Sciarrino, A. Laing, M.G. Thompson, Integrated photonic quantum technologies. Nat. Photonics 14, 273–284 (2020)
Article
ADS
Google Scholar
R. Heideman et al., Large-scale integrated optics using TriPleX waveguide technology: from UV to IR, in Photonics Packaging, Integration, and Interconnects IX, (2009), p. 203–217
C.G. Roeloffzen et al., Low-loss Si3N4 TriPleX optical waveguides: technology and applications overview. IEEE J. Sel. Top. Quantum Electron. 24, 1–21 (2018)
Article
Google Scholar
J. Liu, G. Xu, F. Liu, I. Kityk, X. Liu, Z. Zhen, Recent advances in polymer electro-optic modulators. RSC Adv. 5, 15784–15794 (2015)
Article
ADS
Google Scholar
R. Helkey, A.A.M. Saleh, J. Buckwalter, J.E. Bowers, High-performance photonic integrated circuits on silicon. IEEE J. Sel. Top. Quantum Electron. 25, 1–15 (2019)
Article
Google Scholar
R. Jones et al., Heterogeneously integrated InP\/Silicon photonics: fabricating fully functional transceivers. IEEE Nanotechnol. Mag. 13, 17–26 (2019)
Article
Google Scholar
P. Kaur, A. Boes, G. Ren, T.G. Nguyen, G. Roelkens, A. Mitchell, Hybrid and heterogeneous photonic integration. APL Photonics 6, 061102 (2021)
Article
ADS
Google Scholar
N. Margalit, C. Xiang, S.M. Bowers, A. Bjorlin, R. Blum, J.E. Bowers, Perspective on the future of silicon photonics and electronics. Appl. Phys. Lett. 118, 220501 (2021)
Article
ADS
Google Scholar
H. Yu et al., 800 Gbps Fully Integrated Silicon Photonics Transmitter for Data Center Applications, in 2022 Optical Fiber Communications Conference and Exhibition (OFC), (2022), p. 1–3
G. Li et al., Recent advances in silicon photonic integrated circuits, in Next-Generation Optical Communication: Components, Sub-Systems, and Systems V, 2016), p.
X. Sun, L. Zhang, Q. Zhang, W. Zhang, Si photonics for practical LiDAR solutions. Appl. Sci. 9, 4225 (2019)
Article
Google Scholar
C.-P. Hsu et al., A review and perspective on optical phased array for automotive LiDAR. IEEE J. Sel. Top. Quantum Electron. 27, 1–16 (2021)
Article
Google Scholar
S.A. Miller et al., Large-scale optical phased array using a low-power multi-pass silicon photonic platform. Optica 7, 3–6 (2020)
Article
ADS
Google Scholar
K. Van Acoleyen, W. Bogaerts, J. Jagerska, N. Le Thomas, R. Houdre, R. Baets, Off-chip beam steering with a one-dimensional optical phased array on silicon-on-insulator. Opt. Lett. 34, 1477–1479 (2009)
Article
ADS
Google Scholar
J. Sun, E. Timurdogan, A. Yaacobi, E.S. Hosseini, M.R. Watts, Large-scale nanophotonic phased array. Nature 493, 195–199 (2013)
Article
ADS
Google Scholar
J. Sun et al., Two-dimensional apodized silicon photonic phased arrays. Opt. Lett. 39, 367–370 (2014)
Article
ADS
Google Scholar
J.C. Hulme et al., Fully integrated hybrid silicon two dimensional beam scanner. Opt. Express 23, 5861–5874 (2015)
Article
ADS
Google Scholar
H. Abediasl, H. Hashemi, Monolithic optical phased-array transceiver in a standard SOI CMOS process. Opt. Express 23, 6509–6519 (2015)
Article
ADS
Google Scholar
D.N. Hutchison et al., High-resolution aliasing-free optical beam steering. Optica 3, 887 (2016)
Article
ADS
Google Scholar
W. Xie et al., Heterogeneous silicon photonics sensing for autonomous cars. Opt. Express 27, 3642–3663 (2019)
Article
ADS
Google Scholar
C.V. Poulton et al., Long-range LiDAR and free-space data communication with high-performance optical phased arrays. IEEE J. Sel. Top. Quantum Electron. 25, 1–8 (2019)
Article
Google Scholar
Intel. Mobileye innovation will bring AVs to everyone, everywhere. https://www.intel.com/content/www/us/en/newsroom/news/ces-2021-mobileye-avs-on-move.html#gs.h4zpy8.
S. Chung, M. Nakai, S. Idres, Y. Ni, and H. Hashemi, 19.1 Optical phased-array FMCW LiDAR with on-chip calibration, in 2021 IEEE International Solid- State Circuits Conference (ISSCC), (2021), p. 286–288
M. E. Warren, Automotive LIDAR technology, in 2019 Symposium on VLSI Circuits, (2019), p. C254–C255
C.V. Poulton et al., Large-scale silicon nitride nanophotonic phased arrays at infrared and visible wavelengths. Opt. Lett. 42, 21–24 (2017)
Article
ADS
Google Scholar
Q. Wang, S. Wang, L. Jia, Y. Cai, W. Yue, M. Yu, Silicon nitride assisted 1x64 optical phased array based on a SOI platform. Opt. Express 29, 10509–10517 (2021)
Article
ADS
Google Scholar
K.A. McKinzie et al., InP high power monolithically integrated widely tunable laser and SOA array for hybrid integration. Opt. Express 29, 3490–3502 (2021)
Article
ADS
Google Scholar
M. Soler, O. Calvo-Lozano, M.-C. Estevez, L.M. Lechuga, Nanophotonic biosensors: driving personalized medicine. Opt. Photonics News 31, 24–31 (2020)
Article
Google Scholar
R.A. Soref, F. De Leonardis, V.M.N. Passaro, On-chip detection of trace gases using photonic matched filters. J. Lightwave Technol. 37, 1388–1395 (2019)
Article
ADS
Google Scholar
Y. Xu et al., Optical refractive index sensors with plasmonic and photonic structures: promising and inconvenient truth. Adv. Opt. Mater. 7, 1801433 (2019)
Article
Google Scholar
J. Wang, M.M. Sanchez, Y. Yin, R. Herzer, O.G. Schmidt, Silicon based integrated label free optofluidic biosensors: latest advances and roadmap. Adv. Mater. Technol. 5, 1901138 (2020)
Article
Google Scholar
R. Chandrasekar, Z. Lapin, A. Nichols, R. Braun, A. Fountain, Photonic integrated circuits for Department of Defense-relevant chemical and biological sensing applications: state-of-the-art and future outlooks. Opt. Eng. 58, 020901 (2019)
Article
ADS
Google Scholar
A. Ymeti, J.S. Kanger, R. Wijn, P.V. Lambeck, J. Greve, Development of a multichannel integrated interferometer immunosensor. Sens. Actuators, B Chem. 83, 1–7 (2002)
Article
Google Scholar
M. Lee, P.M. Fauchet, Two-dimensional silicon photonic crystal based biosensing platform for protein detection. Opt. Express 15, 4530–4535 (2007)
Article
ADS
Google Scholar
L. Tombez, E.J. Zhang, J.S. Orcutt, S. Kamlapurkar, W.M.J. Green, Methane absorption spectroscopy on a silicon photonic chip. Optica 4, 1322 (2017)
Article
ADS
Google Scholar
Rockley. https://rockleyphotonics.com/biomarker-sensing/. Accessed 21 June 2022
J.H. Wade, A.T. Alsop, N.R. Vertin, H. Yang, M.D. Johnson, R.C. Bailey, Rapid, multiplexed phosphoprotein profiling using silicon photonic sensor arrays. ACS Cent. Sci. 1, 374–382 (2015)
Article
Google Scholar
G. Ruiz-Vega, M. Soler, L.M. Lechuga, Nanophotonic biosensors for point-of-care COVID-19 diagnostics and coronavirus surveillance. JPhys Photonics 3, 011002 (2021)
Article
ADS
Google Scholar
PHIX. https://www.phix.com/photonic-biosensing-platform/. Accessed 21 June 2022
T.D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, J.L. O’Brien, Quantum computers. Nature 464, 45–53 (2010)
Article
ADS
Google Scholar
Z. Chen, M. Segev, Highlighting photonics: looking into the next decade. eLight (2021)
H.-S. Zhong et al., Quantum computational advantage using photons. Science 370, 1460–1463 (2020)
Article
ADS
Google Scholar
J. Yin et al., Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017)
Article
Google Scholar
A. Politi, M.J. Cryan, J.G. Rarity, S.Y. Yu, J.L. O’Brien, Silica-on-silicon waveguide quantum circuits. Science 320, 646–649 (2008)
Article
ADS
Google Scholar
W.H. Pernice et al., High-speed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits. Nat. Commun. 3, 1325 (2012)
Article
ADS
Google Scholar
J.W. Silverstone et al., On-chip quantum interference between silicon photon-pair sources. Nat. Photonics 8, 104–108 (2014)
Article
ADS
Google Scholar
J. Wang et al., Chip-to-chip quantum photonic interconnect by path-polarization interconversion. Optica 3, 407–413 (2016)
Article
ADS
Google Scholar
J. B. Spring et al., Chip-based array of near-identical, pure, heralded single-photon sources. Optica 4, 90–96 (2017)
Article
ADS
Google Scholar
X.G. Qiang et al., Large-scale silicon quantum photonics implementing arbitrary two-qubit processing. Nat. Photonics 12, 534–539 (2018)
Article
ADS
Google Scholar
T.J. Steiner et al., Ultrabright entangled-photon-pair generation from an Al Ga As-On-insulator microring resonator. PRX Quantum 2, 010337 (2021)
Article
Google Scholar
T. Dai et al., Topologically protected quantum entanglement emitters. Nat. Photonics 16, 248–257 (2022)
Article
ADS
Google Scholar
S. Paesani, M. Borghi, S. Signorini, A. Mainos, L. Pavesi, A. Laing, Near-ideal spontaneous photon sources in silicon quantum photonics. Nat. Commun. 11, 2505 (2020)
Article
ADS
Google Scholar
D. Llewellyn et al., Chip-to-chip quantum teleportation and multi-photon entanglement in silicon. Nat. Phys. 2, 148–153 (2020)
Article
Google Scholar
D. Dai, L. Liu, S. Gao, D.-X. Xu, S. He, Polarization management for silicon photonic integrated circuits. Laser Photonics Rev. 7, 303–328 (2013)
Article
ADS
Google Scholar
M. Kues et al., On-chip generation of high-dimensional entangled quantum states and their coherent control. Nature 546, 622 (2017)
Article
ADS
Google Scholar
A. Mohanty, M. Zhang, A. Dutt, S. Ramelow, P. Nussenzveig, M. Lipson, Quantum interference between transverse spatial waveguide modes. Nat. Commun (2017)
I. Holzman, Y. Ivry, Superconducting nanowires for single-photon detection: progress, challenges, and opportunities. Adv. Quantum Technol. 2, 1800058 (2019)
Article
Google Scholar
D. Bunandar et al., Metropolitan quantum key distribution with silicon photonics. Phys. Rev. X8, 0211009 (2018)
Google Scholar
M. Avesani et al., Full daylight quantum-key-distribution at 1550 nm enabled by integrated silicon photonics. NPJ Quantum Inf. 7, 1–8 (2021)
Article
ADS
Google Scholar
Y. Chi et al., A programmable qudit-based quantum processor. Nat. Commun. 13, 1166 (2022)
Article
ADS
Google Scholar
J.W. Wang et al., Experimental quantum Hamiltonian learning. Nat. Phys. 13, 551–555 (2017)
Article
Google Scholar
A.W. Elshaari, W. Pernice, K. Srinivasan, O. Benson, V. Zwiller, Hybrid integrated quantum photonic circuits. Nat. Photonics 14, 285–298 (2020)
Article
ADS
Google Scholar
F. Najafi et al., On-chip detection of non-classical light by scalable integration of single-photon detectors. Nat. Commun. 6, 1–8 (2015)
Article
ADS
Google Scholar
M.M. Waldrop, The chips are down for Moore’s law. Nature News 530, 144–147 (2016)
Article
ADS
Google Scholar
B.J. Shastri et al., Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 15, 102–114 (2021)
Article
ADS
Google Scholar
H. Zhou et al., Photonic matrix multiplication lights up photonic accelerator and beyond. Light Sci. Appl. 11, 1–21 (2022)
Article
Google Scholar
J.W. Goodman, A.R. Dias, L.M. Woody, Fully parallel, high-speed incoherent optical method for performing discrete Fourier transforms. Opt. Lett. 2, 1–3 (1978)
Article
ADS
Google Scholar
X. Lin et al., All-optical machine learning using diffractive deep neural networks. Science 361, 1004–1008 (2018)
Article
ADS
MathSciNet
MATH
Google Scholar
M. Reck, A. Zeilinger, H.J. Bernstein, P. Bertani, Experimental realization of any discrete unitary operator. Phys. Rev. Lett. 73, 58–61 (1994)
Article
ADS
Google Scholar
A.N. Tait, M.A. Nahmias, B.J. Shastri, P.R. Prucnal, Broadcast and weight: an integrated network for scalable photonic spike processing. J. Lightwave Technol. 32, 3427–3439 (2014)
Article
ADS
Google Scholar
A.N. Tait et al., Neuromorphic photonic networks using silicon photonic weight banks. Sci. Rep. 7, 7430 (2017)
Article
ADS
Google Scholar
T. Zhou et al., Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit. Nat. Photonics 15, 367–373 (2021)
Article
ADS
Google Scholar
H. Zhang et al., An optical neural chip for implementing complex-valued neural network. Nat. Commun. 12, 457 (2021)
Article
ADS
Google Scholar
P. Dong, Silicon photonic integrated circuits for wavelength-division multiplexing applications. IEEE J. Sel. Top. Quantum Electron. 22, 370–378 (2016)
Article
ADS
Google Scholar
L. Chang, S. Liu, J.E. Bowers, Integrated optical frequency comb technologies. Nat. Photonics 16, 95–108 (2022)
Article
ADS
Google Scholar
J. Cheng, H. Zhou, J. Dong, Photonic matrix computing: from fundamentals to applications. Nanomaterials 11, 1683 (2021)
Article
Google Scholar
M. Sakib et al., A 240 Gb/s PAM4 silicon micro-ring optical modulator, in 2022 Optical Fiber Communications Conference and Exhibition (OFC), (2022), p. 01–03
S. Manipatruni, K. Preston, L. Chen, M. Lipson, Ultra-low voltage, ultra-small mode volume silicon microring modulator. Opt. Express 18, 18235–18242 (2010)
Article
ADS
Google Scholar
G. Li et al., 25Gb/s 1V-driving CMOS ring modulator with integrated thermal tuning. Opt. Express 19, 20435–20443 (2011)
Article
ADS
Google Scholar
H.T. Peng, M.A. Nahmias, T.F.D. Lima, A.N. Tait, B.J. Shastri, Neuromorphic photonic integrated circuits. IEEE J. Sel. Top. Quantum Electron. 24, 1–15 (2018)
Article
Google Scholar
V. Bangari et al., Digital electronics and analog photonics for convolutional neural networks (DEAP-CNNs). IEEE J. Sel. Top. Quantum Electron. 26, 1–13 (2020)
Article
Google Scholar
S. Xu, J. Wang, W. Zou, Optical patching scheme for optical convolutional neural networks based on wavelength-division multiplexing and optical delay lines. Opt. Lett. 45, 3689–3692 (2020)
Article
ADS
Google Scholar
S. Xu, J. Wang, W. Zou, Optical convolutional neural network with WDM-based optical patching and microring weighting banks. IEEE Photonics Technol. Lett. 33, 89–92 (2021)
Article
ADS
Google Scholar
X. Xu et al., 11 TOPS photonic convolutional accelerator for optical neural networks. Nature 589, 44–51 (2021)
Article
ADS
Google Scholar
J. Feldmann et al., Parallel convolutional processing using an integrated photonic tensor core. Nature 589, 52–58 (2021)
Article
ADS
Google Scholar
Y. LeCun, Y. Bengio, G. Hinton, Deep learning. Nature 521, 436–444 (2015)
Article
ADS
Google Scholar
S. Chetlur et al., cudnn: Efficient primitives for deep learning. arXiv preprint arXiv:1410.0759, (2014)
H. Bagherian, S. Skirlo, Y. Shen, H. Meng, V. Ceperic, and M. Soljacic, On-chip optical convolutional neural networks. arXiv preprint arXiv:1808.03303, (2018)
C.V. Ramamoorthy, H.F. Li, Pipeline architecture. ACM Comput. Surv. 9, 61–102 (1977)
Article
MATH
Google Scholar
W. Luo, Y. Li, R. Urtasun, and R. Zemel, Understanding the effective receptive field in deep convolutional neural networks, in Advances in Neural Information Processing Systems, vol. 29, 2016.
J. Feldmann, N. Youngblood, C.D. Wright, H. Bhaskaran, W.H.P. Pernice, All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019)
Article
ADS
Google Scholar
X. Xu et al., Photonic perceptron based on a Kerr Microcomb for high-speed, scalable, optical neural networks. Laser Photonics Rev. 14, 2000070 (2020)
Article
ADS
Google Scholar
J. Leuthold, C. Koos, W. Freude, Nonlinear silicon photonics. Nat. Photonics 4, 535–544 (2010)
Article
ADS
Google Scholar
D.A. Miller, Attojoule optoelectronics for low-energy information processing and communications. J. Lightwave Technol. 35, 346–396 (2017)
Article
ADS
Google Scholar
B. Song et al., 3D integrated hybrid silicon laser, Opt. Express 24, 10435–10444 (2016)
Article
ADS
Google Scholar
C. Shang, et al., Electrically pumped quantum-dot lasers grown on 300 mm patterned Si photonic wafers. Light Sci. Appl. 11, e299–e299 (2022)
Article
ADS
Google Scholar
S. Liu et al., High-performance mode-locked lasers on silicon, in Physics and Simulation of Optoelectronic Devices XXVIII, (2020), p. 195–202
C.T. Santis, S.T. Steger, Y. Vilenchik, A. Vasilyev, A. Yariv, High-coherence semiconductor lasers based on integral high-Q resonators in hybrid Si/III–V platforms. Proc. Natl. Acad. Sci. U.S.A. 111, 2879–2884 (2014)
Article
ADS
Google Scholar