Recent News
Covers Gallery
Featured Articles
Computational coherent Raman scattering imaging: breaking physical barriers by fusion of advanced instrumentation and data science
Coherent Raman scattering (CRS) microscopy is a chemical imaging modality that provides contrast based on intrinsic biomolecular vibrations. To date, endeavors on instrumentation have advanced CRS into a powerful analytical tool for studies of cell functions and in situ clinical diagnosis. Nevertheless, the small cross-section of Raman scattering sets up a physical boundary for the design space of a CRS system, which trades off speed, signal fidelity and spectral bandwidth. The synergistic combination of instrumentation and computational approaches offers a way to break the trade-off. In this review, we first introduce coherent Raman scattering and recent instrumentation developments, then discuss current computational CRS imaging methods, including compressive micro-spectroscopy, computational volumetric imaging, as well as machine learning algorithms that improve system performance and decipher chemical information. We foresee a constant permeation of computational concepts and algorithms to push the capability boundary of CRS microscopy.
Realization of photonic p-orbital higher-order topological insulators
The orbital degrees of freedom play a pivotal role in understanding fundamental phenomena in solid-state materials as well as exotic quantum states of matter including orbital superfluidity and topological semimetals. Despite tremendous efforts in engineering synthetic cold-atom, as well as electronic and photonic lattices to explore orbital physics, thus far high orbitals in an important class of materials, namely, higher-order topological insulators (HOTIs), have not been realized. Here, we demonstrate p-orbital corner states in a photonic HOTI, unveiling their underlying topological invariant, symmetry protection, and nonlinearity-induced dynamical rotation. In a Kagome-type HOTI, we find that the topological protection of p-orbital corner states demands an orbital-hopping symmetry in addition to generalized chiral symmetry. Due to orbital hybridization, nontrivial topology of the p-orbital HOTI is “hidden” if bulk polarization is used as the topological invariant, but well manifested by the generalized winding number. Our work opens a pathway for the exploration of intriguing orbital phenomena mediated by higher-band topology applicable to a broad spectrum of systems.
-
Floquet metamaterials
-
Directly wireless communication of human minds via non-invasive brain-computer-metasurface platform
-
Remotely mind-controlled metasurface via brainwaves
-
Hyperbolic metamaterials: fusing artificial structures to natural 2D materials
-
Highlighting photonics: looking into the next decade
Aims and scope
eLight aims to attract the finest manuscripts, broadly covering all sub-fields of optics, photonics and electromagnetics. In particular, we focus on those emerging topics and cross-disciplinary researches related to optics.
Editors' Quotes
From EiC Prof. Aydogan Ozcan
"We look forward to working with optics and photonics community to make eLight among the first choices to publish the highest quality research results from all around the world, broadly covering all the exciting research and advances in light science and engineering."
From EiC Prof. Cheng-Wei Qiu
"For those who love the science of light, photonics, and optical materials, we wish to make eLight among the first few journal names flashing in your mind when you are about to submit your excellent and proud works. Let us grow and glow together, and with your paramount support, we could make it happen. "
Editor-in-Chief: Dr. Aydogan Ozcan
Dr. Aydogan Ozcan is the Chancellor’s Professor and the Volgenau Chair for Engineering Innovation at UCLA and an HHMI Professor with the Howard Hughes Medical Institute, leading the Bio- and Nano-Photonics Laboratory at UCLA School of Engineering and is also the Associate Director of the California NanoSystems Institute. Dr. Ozcan is elected Fellow of the National Academy of Inventors (NAI) and holds >45 issued/granted patents and >20 pending patent applications and is also the author of one book and the co-author of >700 peer-reviewed publications in major scientific journals and conferences. Dr. Ozcan is the founder and a member of the Board of Directors of Lucendi Inc., Hana Diagnostics, Pictor Labs, as well as Holomic/Cellmic LLC, which was named a Technology Pioneer by The World Economic Forum in 2015. Dr. Ozcan is also a Fellow of the American Association for the Advancement of Science (AAAS), the International Photonics Society (SPIE), the Optical Society of America (OSA), the American Institute for Medical and Biological Engineering (AIMBE), the Institute of Electrical and Electronics Engineers (IEEE), the Royal Society of Chemistry (RSC), the American Physical Society (APS) and the Guggenheim Foundation, and has received major awards including the Presidential Early Career Award for Scientists and Engineers, International Commission for Optics Prize, Biophotonics Technology Innovator Award, Rahmi M. Koc Science Medal, International Photonics Society Early Career Achievement Award, Army Young Investigator Award, NSF CAREER Award, NIH Director’s New Innovator Award, Navy Young Investigator Award, IEEE Photonics Society Young Investigator Award and Distinguished Lecturer Award, National Geographic Emerging Explorer Award, National Academy of Engineering The Grainger Foundation Frontiers of Engineering Award and MIT’s TR35 Award for his seminal contributions to computational imaging, sensing and diagnostics.
Editor-in-Chief: Prof. Cheng-Wei Qiu
Prof. Cheng-Wei Qiu received his B.Eng. (USTC) and Ph. D. (NUS) degree in 2003 and 2007, respectively. He was a Postdoctoral Fellow at Physics Department in MIT till the end of 2009. Since December 2009, he joined NUS as an Assistant Professor and was promoted to Associate Professor with tenure in Jan 2017. From 1st Jan 2018, he was promoted to Dean’s Chair Professor in Faculty of Engineering, NUS. He was the recipient of the SUMMA Graduate Fellowship in Advanced Electromagnetics in 2005, IEEE AP-S Graduate Research Award in 2006, URSI Young Scientist Award in 2008, NUS Young Investigator Award in 2011, MIT TR35@Singapore Award in 2012, Young Scientist Award by Singapore National Academy of Science in 2013, Faculty Young Research Award in NUS 2013, SPIE Rising Researcher Award 2018, Young Engineering Research Award 2018 in NUS. Dr. Qiu is a fellow of Optica (formerly OSA), SPIE, and The Electromagnetics Academy. His research is known for the structured light for beam manipulation and nanoparticle manipulation. He has published over 300 peer-reviewed journal papers. He was Highly Cited Researchers 2019 by Web of Science. He has been serving in Associate Editor for various journals such as PhotoniX, Photonics Research, and Editor-in-Chief for eLight. He also serves in Editorial Advisory Board for Laser and Photonics Review, Advanced Optical Materials, and ACS Photonics.
Sister journal of
-
-
- ISSN: 2662-8643 (electronic)
- ISSN: 2097-1710 (print)
Annual Journal Metrics
Speed
20 days to first decision for reviewed manuscripts (Median)
Usage
270,545 downloads (2022)
This journal is indexed by
• Google Scholar
• CNKI
• Baidu
• Dimensions
• CNPIEC
• CLOCKSS
• Wanfang
• TD Net Discovery Service
• ProQuest-ExLibris
• Portico
• OCLC WorldCat Discovery Service
• Naver
• EBSCO Discovery Service