J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. **85**, 3966–3969 (2000)

Article
ADS
Google Scholar

N. Engheta, R.W. Ziolkowski, *Metamaterials: physics and engineering explorations* (Wiley, 2006)

Book
Google Scholar

A. Alù, M.G. Silveirinha, A. Salandrino, N. Engheta, Epsilon-near-zero metamaterials and electromagnetic sources: tailoring the radiation phase pattern. Phys. Rev. B **75**, 155410 (2007)

Article
ADS
Google Scholar

I. Liberal, M. Lobet, Y. Li, N. Engheta, Near-zero-index media as electromagnetic ideal fluids. Proc. Natl. Acad. Sci. **117**, 24050–24054 (2020)

Article
ADS
MathSciNet
Google Scholar

A. Alù, N. Engheta, Achieving transparency with plasmonic and metamaterial coatings. Phys. Rev. E **72**, 016623 (2005)

Article
ADS
Google Scholar

J.B. Pendry, D. Schurig, D.R. Smith, Controlling electromagnetic fields. Science **312**, 1780–1782 (2006)

Article
ADS
MathSciNet
MATH
Google Scholar

Passler, N. et al. Hyperbolic shear polaritons in low-symmetry crystals. Nature **602**, 595–600 (2022)

Article
ADS
Google Scholar

A.B. Khanikaev, S. Hossein Mousavi, W.K. Tse, M. Kargarian, A.H. MacDonald, G. Shvets, Photonic topological insulators. Nat. Mater. **12**(3), 233–239 (2013)

Article
ADS
Google Scholar

N. Yu, F. Capasso, Flat optics with designer metasurfaces. Nat. Mater. **13**, 139–150 (2014)

Article
ADS
Google Scholar

A.M. Shaltout, V.M. Shalaev, M.L. Brongersma, Spatiotemporal light control with active metasurfaces. Science **364**, eaat3100 (2019)

Article
ADS
Google Scholar

D.L. Sounas, A. Alù, Non-reciprocal photonics based on time modulation. Nat. Photonics **11**, 774–783 (2017)

Article
ADS
Google Scholar

P.A. Huidobro, E. Galiffi, S. Guenneau, R.V. Craster, J.B. Pendry, Fresnel drag in space–time-modulated metamaterials. Proc. Natl. Acad. Sci. **116**, 24943–24948 (2019)

Article
ADS
Google Scholar

E. Lustig, M. Segev, Y. Sharabi, Topological aspects of photonic time crystals. Optica **5**(11), 1390–1395 (2018)

Article
ADS
Google Scholar

R. Fleury, A.B. Khanikaev, A. Alù, Floquet topological insulators for sound. Nat. Commun. **7**, 1–11 (2016)

Article
Google Scholar

A. Darabi, X. Ni, M. Leamy, A. Alù, Reconfigurable Floquet elastodynamic topological insulator based on synthetic angular momentum bias. Sci. Adv. **6**, eaba8656 (2020)

Article
ADS
Google Scholar

Y.G. Peng, C.Z. Qin, D.G. Zhao, Y.X. Shen, X.Y. Xu, M. Bao et al., Experimental demonstration of anomalous Floquet topological insulator for sound. Nat Commun **7**(1), 1–8 (2016)

Article
Google Scholar

Q. Lin, M. Xiao, L. Yuan, S. Fan, Photonic Weyl point in a two-dimensional resonator lattice with a synthetic frequency dimension. Nat. Commun. **7**, 1–7 (2016)

Article
ADS
Google Scholar

E. Galiffi, P.A. Huidobro, J.B. Pendry, Broadband nonreciprocal amplification in luminal metamaterials. Phys. Rev. Lett. **123**(20), 206101 (2019)

Article
ADS
Google Scholar

E. Galiffi et al., Photonics of time-varying media. Adv. Photonics **4**, 014002 (2022)

Article
ADS
Google Scholar

K.S. Novoselov, A. Mishchenko, A. Carvalho, A.H.C. Neto, 2D materials and van der Waals heterostructures. Science **353**, aac9439 (2016)

Article
Google Scholar

Y. Cao et al., Unconventional superconductivity in magic-angle graphene superlattices. Nature **556**, 43–50 (2018)

Article
ADS
Google Scholar

P. Rickhaus et al., Correlated electron-hole state in twisted double-bilayer graphene. Science **373**, 1257–1260 (2021)

Article
ADS
Google Scholar

M.Z. Hasan, C.L. Kane, Colloquium: topological insulators. Rev. Mod. Phys. **82**, 3045 (2010)

Article
ADS
Google Scholar

C.M. Bender, S. Boettcher, Real spectra in non-Hermitian Hamiltonians having P T symmetry. Phys. Rev. Lett. **80**, 5243 (1998)

Article
ADS
MathSciNet
MATH
Google Scholar

D.A. Abanin, E. Altman, I. Bloch, M. Serbyn, Colloquium: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. **91**, 21001 (2019)

Article
MathSciNet
Google Scholar

P.L. Kapitza, Dynamical stability of a pendulum when its point of suspension vibrates, and Pendulum with a vibrating suspension. Collect. Pap. PL Kapitza **2**, 714–737 (1965)

Google Scholar

S. Wimberger, I. Guarneri, S. Fishman, Classical Scaling Theory of Quantum Resonances. Phys. Rev. Lett. **92**, 084102 (2004)

Article
ADS
Google Scholar

A. Cartella, T.F. Nova, M. Fechner, R. Merlin, A. Cavalleri, Parametric amplification of optical phonons. Proc. Natl. Acad. Sci. **115**, 12148–12151 (2018)

Article
ADS
Google Scholar

A.S. Disa, T.F. Nova, A. Cavalleri, Engineering crystal structures with light. Nat. Phys **17**, 1087–1092 (2021)

Article
Google Scholar

M.S. Rudner, N.H. Lindner, Band structure engineering and non-equilibrium dynamics in Floquet topological insulators. Nat. Rev. Phys. **2**, 229–244 (2020)

Article
Google Scholar

A. Dutt, et al. Experimental band structure spectroscopy along a synthetic dimension. Nat. Commun. **10**, 3122 (2019). https://www.nature.com/articles/s41467-019-11117-9

T.T. Koutserimpas, R. Fleury, Electromagnetic fields in a time-varying medium: exceptional points and operator symmetries. IEEE Trans. Antennas Propag. **68**, 6717–6724 (2020)

Article
ADS
Google Scholar

F.L. Moore, J.C. Robinson, C. Bharucha, P.E. Williams, M.G. Raizen, Observation of dynamical localization in atomic momentum transfer: a new testing ground for quantum chaos. Phys. Rev. Lett. **73**, 2974 (1994)

Article
ADS
Google Scholar

D. Fausti et al., Light-induced superconductivity in a stripe-ordered cuprate. Science **331**, 189–191 (2011)

Article
ADS
Google Scholar

X. Mi et al., Time-crystalline eigenstate order on a quantum processor. Nature **601**, 531–536 (2022)

Article
ADS
Google Scholar

Getting Light to Bend Backwards|NSF—National Science Foundation. https://www.nsf.gov/news/news_summ.jsp?org=EEC&cntn_id=110442&preview=false.

T. Oka, S. Kitamura, Floquet engineering of quantum materials. Annu. Rev. Condens. Matter Phys. **10**, 387–408 (2019)

Article
ADS
Google Scholar

A. Dutt et al., A single photonic cavity with two independent physical
synthetic dimensions. Science **367**, 59–64 (2020)

Article
ADS
Google Scholar

J.K. Asbóth, L. Oroszlány, A. Pályi, A short course on topological insulators. Lect. notes Phys. **919**, 166 (2016)

MathSciNet
MATH
Google Scholar

M.B. Dahan, E. Peik, J. Reichel, Y. Castin, C. Salomon, Bloch oscillations of atoms in an optical potential. Phys. Rev. Lett. **76**, 4508 (1996)

Article
ADS
Google Scholar

J.W. McIver et al., Light-induced anomalous Hall effect in graphene. Nat. Phys. **16**, 38–41 (2020)

Article
Google Scholar

J.-Y. Shan et al., Giant modulation of optical nonlinearity by Floquet engineering. Nature **600**, 235–239 (2021)

Article
ADS
Google Scholar

X. Ni, S. Kim, A. Alù, Topological insulator in two synthetic dimensions based on an optomechanical resonator. Optica **8**, 1024–1032 (2021)

Article
ADS
Google Scholar

M.C. Rechtsman, J.M. Zeuner, Y. Plotnik, Y. Lumer, D. Podolsky, F. Dreisow et al., Photonic Floquet topological insulators. Nature **496**(7444), 196–200 (2013)

Article
ADS
Google Scholar

Pyrialakos, G. G., Beck, J., Heinrich, M., Maczewsky, L. J., Kantartzis, N. V., Khajavikhan, M., et al. Bimorphic Floquet topological insulators. arXiv preprint arXiv:2202.08076 (2022).

M.A. Bandres, S. Wittek, G. Harari, M. Parto, J. Ren, M. Segev et al., Topological insulator laser: experiments. Science **359**(6381), eaar4005 (2018)

Article
Google Scholar

S.K. Ivanov, Y. Zhang, Y.V. Kartashov, D.V. Skryabin, Floquet topological insulator laser. APL Photonics **4**(12), 126101 (2019)

Article
ADS
Google Scholar

S. Mukherjee, M.C. Rechtsman, Observation of Floquet solitons in a topological bandgap. Science **368**(6493), 856–859 (2020)

Article
ADS
Google Scholar

W. Zhu, H. Xue, J. Gong, Y. Chong, B. Zhang, Time-periodic corner states from Floquet higher-order topology. Nat. Commun. **13**(1), 1–6 (2022)

ADS
Google Scholar

M. Hafezi, E.A. Demler, M.D. Lukin, J.M. Taylor, Robust optical delay lines with topological protection. Nat. Phys. **7**(11), 907–912 (2011)

Article
Google Scholar

Mirmoosa, M. S., Koutserimpas, T. T., Ptitcyn, G. A., Tretyakov, S. A. & Fleury, R. Dipole polarizability of time-varying particles. arXiv:2002.12297 [physics.app-ph] (2020).

Galiffi, E., Huidobro, P. A. & Pendry, J. B. An Archimedes’ Screw for Light.
(2021). arXiv:2109.14460. https://doi.org/10.48550/arXiv.2109.14460

H. Li, S. Yin, E. Galiffi, A. Alù, Temporal parity-time symmetry for extreme energy transformations. Phys. Rev. Lett. **127**, 153903 (2021)

Article
ADS
Google Scholar

Z. Chen, Y. Peng, H. Li, J. Liu, Y. Ding, B. Liang et al., Efficient nonreciprocal mode transitions in spatiotemporally modulated acoustic metamaterials. Sci. Adv. **7**(45), eabj1198 (2021)

Article
ADS
Google Scholar

N. Engheta, Metamaterials with high degrees of freedom: Space, time, and more. Nanophotonics **10**, 639–642 (2021)

Article
Google Scholar

R. Morgenthaler, Velocity modulation of electromagnetic waves. IRE Trans. Microw. Theory Tech. **6**, 167–172 (1958). https://doi.org/10.1109/TMTT.1958.1124533

Article
ADS
Google Scholar

B.A. Auld, J.H. Collins, H.R. Zapp, Signal processing in a nonperiodically time-varying magnetoelastic medium. Proc. IEEE **56**, 258–272 (1968)

Article
Google Scholar

R.L. Fante, Transmission of electromagnetic waves into time-varying media. IEEE Trans. Antennas Propag. **AP-19**, 417–424 (1971)

Article
ADS
Google Scholar

J.T. Mendonça, A.M. Martins, A. Guerreiro, Temporal beam splitter and temporal interference. Phys. Rev. A **68**, 043801 (2003)

Article
ADS
Google Scholar

Y. Xiao, D.N. Maywar, G.P. Agrawal, Reflection and transmission of electromagnetic waves at a temporal boundary. Opt. Lett. **39**, 574 (2014)

Article
ADS
Google Scholar

E. Yablonovitch, Spectral broadening in the light transmitted through a rapidly growing plasma. Phys. Rev. Lett. **31**, 877–879 (1973)

Article
ADS
Google Scholar

S.C. Wilks, J.M. Dawson, W.B. Mori, Frequency up-conversion of electromagnetic radiation with use of an overdense plasma. Phys. Rev. Lett. **61**, 337–340 (1988)

Article
ADS
Google Scholar

K. Lee et al., Linear frequency conversion via sudden merging of meta-atoms in time-variant metasurfaces. Nat. Photonics **12**, 765–773 (2018)

Article
ADS
Google Scholar

Y. Zhou et al., Broadband frequency translation through time refraction in an epsilon-near-zero material. Nat. Commun. **11**, 1–7 (2020)

ADS
Google Scholar

J. Tunesi et al., Terahertz emission mediated by ultrafast time-varying metasurfaces. Phys. Rev. Res. **3**, L042006 (2021)

Article
Google Scholar

V. Pacheco-Peña, N. Engheta, Antireflection temporal coatings. Optica **7**, 323–331 (2020)

Article
ADS
Google Scholar

G. Castaldi, V. Pacheco-Peña, M. Moccia, N. Engheta, V. Galdi, Exploiting space-time duality in the synthesis of impedance transformers via temporal metamaterials. Nanophotonics **10**, 3687–3699 (2021)

Article
Google Scholar

A. Akbarzadeh, N. Chamanara, C. Caloz, Inverse prism based on temporal discontinuity and spatial dispersion. Opt. Lett. **43**, 3297 (2018)

Article
ADS
Google Scholar

V. Pacheco-Peña, N. Engheta, Temporal aiming. Light Sci. Appl. **9**, 1–12 (2020)

Article
Google Scholar

V. Pacheco-Peña, N. Engheta, Temporal equivalent of the Brewster angle. Phys. Rev. B **104**, 214308 (2021)

Article
ADS
Google Scholar

Pacheco-Peña, V., Engheta, N. Temporal metamaterials with gain and loss. arXiv:2108.01007 [physics.optics] (2021).

M.M. Idemen, *Discontinuities in the electromagnetic field* (Wiley, 2011)

Book
MATH
Google Scholar

D.K. Kalluri, *Electromagnetics of time varying complex media: frequency and polarization transformer* (CRC Press, 2010)

Book
Google Scholar

S.I. Pekar, The theory of electromagnetic waves in a crystal in which excitons are produced. Sov. Phys. JETP **6**, 785 (1958)

ADS
MathSciNet
MATH
Google Scholar

Halevi, P. Spatial dispersion in solids and plasmas. vol. 1 (North Holland, 1992).

K. Henneberger, Additional boundary conditions: an historical mistake. Phys. Rev. Lett. **80**, 2889–2892 (1998)

Article
ADS
Google Scholar

D.F. Nelson, B. Chen, Comment on “additional boundary conditions: an historical mistake.” Phys. Rev. Lett. **83**, 1263 (1999)

Article
ADS
Google Scholar

A.A. Orlov, P.M. Voroshilov, P.A. Belov, Y.S. Kivshar, Engineered optical nonlocality in nanostructured metamaterials. Phys. Rev. B **84**, 45424 (2011)

Article
ADS
Google Scholar

W. Yan, M. Wubs, N.A. Mortensen, Hyperbolic metamaterials: nonlocal response regularizes broadband supersingularity. Phys. Rev. B **86**, 205429 (2012)

Article
ADS
Google Scholar

A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics **7**, 948–957 (2013)

Article
ADS
Google Scholar

M.G. Silveirinha, Additional boundary condition for the wire medium. IEEE Trans. Antennas Propag. **54**, 1766–1780 (2006)

Article
ADS
MathSciNet
MATH
Google Scholar

M.G. Silveirinha, Additional boundary conditions for nonconnected wire media. New J. Phys. **11**, 113016 (2009)

Article
ADS
Google Scholar

M.G. Silveirinha, C.A. Fernandes, J.R. Costa, Additional boundary condition for a wire medium connected to a metallic surface. New J. Phys. **10**, 053011 (2008)

Article
ADS
Google Scholar

M.I. Bakunov, A.V. Maslov, Reflection and transmission of electromagnetic waves at a temporal boundary: comment. Opt. Lett. **39**, 6029 (2014)

Article
ADS
Google Scholar

D.M. Solís, R. Kastner, N. Engheta, Time-varying materials in the presence of dispersion: plane-wave propagation in a Lorentzian medium with temporal discontinuity. Photonics Res. **9**, 1842 (2021)

Article
Google Scholar

J. Gratus, R. Seviour, P. Kinsler, D.A. Jaroszynski, Temporal boundaries in electromagnetic materials. New J. Phys. **23**, 083032 (2021)

Article
ADS
MathSciNet
Google Scholar

M.I. Bakunov, A.V. Shirokova, M.A. Kurnikov, A.V. Maslov, Light scattering at a temporal boundary in a Lorentz medium. Opt. Lett. **46**, 4988 (2021)

Article
ADS
Google Scholar

M.Z. Alam, I. De Leon, R.W. Boyd, Large optical nonlinearity of indium tin oxide in its epsilon-near-zero region. Science **352**, 795–797 (2016)

Article
ADS
Google Scholar

D.N. Basov, M.M. Fogler, F.J. García De Abajo, Polaritons in van der Waals materials. Science **354**, aaj1992 (2016)

Article
Google Scholar

Mann, S. A. et al. Ultrafast optical switching and power limiting in intersubband polaritonic metasurfaces. Optica **8**, 606–613 (2021)

Article
ADS
Google Scholar

J. Yu et al., Electrically tunable nonlinear polaritonic metasurface. Nat. Photonics **16**, 72–78 (2022)

Article
ADS
Google Scholar

F. Miyamaru et al., Ultrafast frequency-shift dynamics at temporal boundary induced by structural-dispersion switching of waveguides. Phys. Rev. Lett. **127**, 053902 (2021)

Article
ADS
Google Scholar

S. Yin, A. Alù, Efficient phase conjugation in a space-time leaky waveguide. ACS Photonics **9**(3), 979–984 (2022)

Article
Google Scholar

S. Vezzoli, V. Bruno, C. DeVault, T. Roger, V.M. Shalaev, A. Boltasseva et al., Optical time reversal from time-dependent epsilon-near-zero media. Phys Rev Lett **120**(4), 043902 (2018)

Article
ADS
Google Scholar

V. Bacot, M. Labousse, A. Eddi, M. Fink, E. Fort, Time reversal and holography with spacetime transformations. Nat. Phys. **12**, 972–977 (2016)

Article
Google Scholar

B. Apffel, E. Fort, Frequency conversion cascade by crossing multiple space and time interfaces. Phys. Rev. Lett. **128**, 064501 (2022)

Article
ADS
Google Scholar

C. Croënne, J.O. Vasseur, O. Bou Matar, A.-C. Hladky-Hennion, B. Dubus, Non-reciprocal behavior of one-dimensional piezoelectric structures with space-time modulated electrical boundary conditions. J. Appl. Phys. **126**, 145108 (2019)

Article
ADS
Google Scholar

C. Cho, X. Wen, N. Park, J. Li, Digitally virtualized atoms for acoustic metamaterials. Nat. Commun. **11**, 1–8 (2020)

Article
ADS
Google Scholar

Y. Yang et al., High-harmonic generation from an epsilon-near-zero material. Nat. Phys. **15**, 1022–1026 (2019)

Article
Google Scholar

V. Bruno et al., Negative refraction in time-varying strongly coupled plasmonic-antenna- epsilon-near-zero systems. Phys. Rev. Lett. **124**, 43902 (2020)

Article
ADS
Google Scholar

G. Hu et al., Topological polaritons and photonic magic angles in twisted α-MoO3 bilayers. Nature **582**, 209–213 (2020)

Article
ADS
Google Scholar

Sugiura, S., Demler, E. A., Lukin, M. & Podolsky, D. Resonantly enhanced polariton wave mixing and Floquet parametric instability. arXiv Prepr. arXiv1910.03582 (2019).

Michael, M. H. et al. Generalized Fresnel-Floquet equations for driven quantum materials. arXiv Prepr. arXiv2110.03704 (2021).

A.J. Sternbach et al., Programmable hyperbolic polaritons in van der Waals semiconductors. Science **371**, 617–620 (2021)

Article
ADS
Google Scholar

D. Torrent, Strong spatial dispersion in time-modulated dielectric media. Phys. Rev. B **102**, 214202 (2020)

Article
ADS
Google Scholar

D. Roy, C.M. Wilson, O. Firstenberg, Colloquium: Strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys. **89**(2), 021001 (2017)

Article
MathSciNet
Google Scholar

L. Yuan, A. Dutt, M. Qin, S. Fan, X. Chen, Creating locally interacting Hamiltonians in the synthetic frequency dimension for photons. Photonics Res **8**(9), B8–B14 (2020)

Article
Google Scholar

A.K. Tusnin, A.M. Tikan, T.J. Kippenberg, Nonlinear states and dynamics in a synthetic frequency dimension. Phys. Rev. A **102**(2), 023518 (2020)

Article
ADS
Google Scholar