H. Pahlevaninezhad, M. Khorasaninejad, Y.-W. Huang, Z. Shi, L.P. Hariri, D.C. Adams, V. Ding, A. Zhu, C.-W. Qiu, F. Capasso et al., Nano-optic endoscope for high-resolution optical coherence tomography in vivo. Nat. Photonics 12(9), 540–547 (2018)
Article
ADS
Google Scholar
A. Lombardini, V. Mytskaniuk, S. Sivankutty, E.R. Andresen, X. Chen, J. Wenger, M. Fabert, N. Joly, F. Louradour, A. Kudlinski et al., High-resolution multimodal flexible coherent Raman endoscope. Light. Sci. Appl. 7(1), 1–8 (2018)
Article
Google Scholar
G. Zheng, R. Horstmeyer, C. Yang, Wide-field, high-resolution Fourier ptychographic microscopy. Nat. Photonics 7(9), 739–745 (2013)
Article
ADS
Google Scholar
J. Fan, J. Suo, J. Wu, H. Xie, Y. Shen, F. Chen, G. Wang, L. Cao, G. Jin, Q. He et al., Video-rate imaging of biological dynamics at centimetre scale and micrometre resolution. Nat. Photonics 13(11), 809–816 (2019)
Article
ADS
Google Scholar
W.-Q. Wang, Space-time coding MIMO-OFDM SAR for high-resolution imaging. IEEE T. Geosci. Remote 49(8), 3094–3104 (2011)
Article
ADS
Google Scholar
D.J. Brady, M.E. Gehm, R.A. Stack, D.L. Marks, D.S. Kittle, D.R. Golish, E. Vera, S.D. Feller, Multiscale gigapixel photography. Nature 486(7403), 386–389 (2012)
Article
ADS
Google Scholar
H. Wang, Z. Göröcs, W. Luo, Y. Zhang, Y. Rivenson, L.A. Bentolila, A. Ozcan, Computational out-of-focus imaging increases the space-bandwidth product in lens-based coherent microscopy. Optica 3(12), 1422–1429 (2016)
Article
ADS
Google Scholar
A.W. Lohmann, R.G. Dorsch, D. Mendlovic, Z. Zalevsky, C. Ferreira, Space-bandwidth product of optical signals and systems. JOSA A 13(3), 470–473 (1996)
Article
ADS
Google Scholar
X. Yuan, Y. Liu, J. Suo, Q. Dai, Plug-and-play algorithms for large-scale snapshot compressive imaging. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1447–1457 (2020)
Y. Shechtman, Y.C. Eldar, O. Cohen, H.N. Chapman, J. Miao, M. Segev, Phase retrieval with application to optical imaging: a contemporary overview. IEEE Signal Proc. Mag. 32(3), 87–109 (2015)
Article
ADS
Google Scholar
J. Miao, P. Charalambous, J. Kirz, D. Sayre, Extending the methodology of X-ray crystallography to allow imaging of micrometre-sized non-crystalline specimens. Nature 400(6742), 342–344 (1999)
Article
ADS
Google Scholar
E.J. Candes, X. Li, M. Soltanolkotabi, Phase retrieval from coded diffraction patterns. Appl. Comput. Harmon. A. 39(2), 277–299 (2015)
Article
MathSciNet
Google Scholar
O. Katz, P. Heidmann, M. Fink, S. Gigan, Non-invasive single-shot imaging through scattering layers and around corners via speckle correlations. Nat. Photonics 8(10), 784–790 (2014)
Article
ADS
Google Scholar
R.W. Gerchberg, A practical algorithm for the determination of phase from image and diffraction plane pictures. Optik 35, 237–246 (1972)
Google Scholar
J.R. Fienup, Phase retrieval algorithms: a comparison. Appl. Optics 21(15), 2758–2769 (1982)
Article
ADS
Google Scholar
E.J. Candes, T. Strohmer, V. Voroninski, Phaselift: Exact and stable signal recovery from magnitude measurements via convex programming. Commun. Pur. Appl. Math. 66(8), 1241–1274 (2013)
Article
MathSciNet
Google Scholar
L. Vandenberghe, S. Boyd, Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)
Article
MathSciNet
Google Scholar
E.J. Candes, X. Li, M. Soltanolkotabi, Phase retrieval via Wirtinger flow: Theory and algorithms. IEEE T. Inform. Theory 61(4), 1985–2007 (2015)
Article
MathSciNet
Google Scholar
Y. Chen, E. Candes, Solving random quadratic systems of equations is nearly as easy as solving linear systems. In: International Conference on Neural Information Processing Systems (NIPS), pp. 739–747 (2015)
W.-J. Zeng, H.-C. So, Coordinate descent algorithms for phase retrieval. Signal Process. 169, 107418 (2020)
V. Katkovnik, Phase retrieval from noisy data based on sparse approximation of object phase and amplitude. arXiv preprint arXiv:1709.01071 (2017)
C.A. Metzler, A. Maleki, R.G. Baraniuk, BM3D-PRGAMP: Compressive phase retrieval based on BM3D denoising. In: International Conference on Image Processing (ICIP), pp. 2504–2508 (2016). IEEE
S. Chowdhury, M. Chen, R. Eckert, D. Ren, F. Wu, N. Repina, L. Waller, High-resolution 3D refractive index microscopy of multiple-scattering samples from intensity images. Optica 6(9), 1211–1219 (2019)
Article
ADS
Google Scholar
Y. Rivenson, Y. Zhang, H. Günaydın, D. Teng, A. Ozcan, Phase recovery and holographic image reconstruction using deep learning in neural networks. Light Sci. Appl. 7(2), 17141–17141 (2018)
Article
Google Scholar
A. Kappeler, S. Ghosh, J. Holloway, O. Cossairt, A. Katsaggelos, Ptychnet: CNN based Fourier ptychography. In: International Conference on Image Processing (ICIP), pp. 1712–1716 (2017). IEEE
C. Metzler, P. Schniter, A. Veeraraghavan, et al: prDeep: robust phase retrieval with a flexible deep network. In: International Conference on Machine Learning (ICML), pp. 3501–3510 (2018). PMLR
S.V. Venkatakrishnan, C.A. Bouman, B. Wohlberg, Plug-and-play priors for model based reconstruction. In: Global Conference on Signal and Information Processing (GlobalSIP), pp. 945–948 (2013). IEEE
X. Liao, H. Li, L. Carin, Generalized alternating projection for weighted-2,1 minimization with applications to model-based compressive sensing. SIAM J. Imaging Sci. 7(2), 797–823 (2014)
Article
MathSciNet
Google Scholar
X. Yuan, Generalized alternating projection based total variation minimization for compressive sensing. In: International Conference on Image Processing (ICIP), pp. 2539–2543 (2016). IEEE
J.M. Bioucas-Dias, M.A. Figueiredo, A new TwIST: Two-step iterative shrinkage/thresholding algorithms for image restoration. IEEE T. Image Process. 16(12), 2992–3004 (2007)
Article
ADS
MathSciNet
Google Scholar
A. Beck, M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear inverse problems. SIAM J. Imaging Sci. 2(1), 183–202 (2009)
Article
MathSciNet
Google Scholar
Y. Liu, X. Yuan, J. Suo, D.J. Brady, Q. Dai, Rank minimization for snapshot compressive imaging. IEEE T. Pattern Anal. 41(12), 2990–3006 (2018)
Article
Google Scholar
T. Goldstein, C. Studer, Phasemax: Convex phase retrieval via basis pursuit. IEEE T. Inform. Theory 64(4), 2675–2689 (2018)
Article
MathSciNet
Google Scholar
O. Dhifallah, C. Thrampoulidis, Y.M. Lu, Phase retrieval via linear programming: Fundamental limits and algorithmic improvements. In: Annual Allerton Conference on Communication, Control, and Computing (Allerton), pp. 1071–1077 (2017). IEEE
Z. Yuan, H. Wang, Phase retrieval via reweighted Wirtinger flow. Appl. Optics 56(9), 2418–2427 (2017)
Article
ADS
Google Scholar
G. Wang, G.B. Giannakis, Y.C. Eldar, Solving systems of random quadratic equations via truncated amplitude flow. IEEE T. Inform. Theory 64(2), 773–794 (2017)
Article
MathSciNet
Google Scholar
G. Wang, G.B. Giannakis, Y. Saad, J. Chen, Phase retrieval via reweighted amplitude flow. IEEE T. Signal Proces. 66(11), 2818–2833 (2018)
MathSciNet
MATH
Google Scholar
W.-J. Zeng, H.-C. So, Coordinate descent algorithms for phase retrieval. arXiv preprint arXiv:1706.03474 (2017)
K. Wei, Solving systems of phaseless equations via Kaczmarz methods: A proof of concept study. Inverse Probl. 31(12), 125008 (2015)
R. Chandra, T. Goldstein, C. Studer, Phasepack: A phase retrieval library. In: International Conference on Sampling Theory and Applications (SampTA), pp. 1–5 (2019). IEEE
Z. Wang, A.C. Bovik, H.R. Sheikh, E.P. Simoncelli, Image quality assessment: from error visibility to structural similarity. IEEE T. Image Process. 13(4), 600–612 (2004)
Article
ADS
Google Scholar
E. Agustsson, R. Timofte, Ntire 2017 challenge on single image super-resolution: Dataset and study. In: Conference on Computer Vision and Pattern Recognition (CVPR), pp. 126–135 (2017)
Choksawatdikorn: Onion cells under microscope view. https://www.shutterstock.com/zh/image-photo/onion-cells-microscope-1037260501. [Online; accessed 20-June-2021] (2021)
J. Miao, T. Ishikawa, I.K. Robinson, M.M. Murnane, Beyond crystallography: Diffractive imaging using coherent X-ray light sources. Science 348(6234), 530–535 (2015)
Article
ADS
MathSciNet
Google Scholar
Y.H. Lo, L. Zhao, M. Gallagher-Jones, A. Rana, J.J. Lodico, W. Xiao, B. Regan, J. Miao, In situ coherent diffractive imaging. Nat. Commun. 9(1), 1–10 (2018)
Article
Google Scholar
Choksawatdikorn: Blood cells under microscope view for histology education. https://www.shutterstock.com/zh/image-photo/blood-cells-under-microscope-view-histology-1102617128. [Online; accessed 5-November-2020] (2020)
L. Bian, J. Suo, G. Zheng, K. Guo, F. Chen, Q. Dai, Fourier ptychographic reconstruction using Wirtinger flow optimization. Opt. Express 23(4), 4856–4866 (2015)
Article
ADS
Google Scholar
M. Everingham, L. Van Gool, C.K.I. Williams, J. Winn, A. Zisserman, The PASCAL Visual Object Classes Challenge 2012 (VOC2012) Results. http://www.pascal-network.org/challenges/VOC/voc2012/workshop/index.html
M. Elad, M. Aharon, Image denoising via sparse and redundant representations over learned dictionaries. IEEE T. Image Process. 15(12), 3736–3745 (2006)
Article
ADS
MathSciNet
Google Scholar
K. Zhang, W. Zuo, Y. Chen, D. Meng, L. Zhang, Beyond a gaussian denoiser: Residual learning of deep CNN for image denoising. IEEE T. Image Process. 26(7), 3142–3155 (2017)
Article
ADS
MathSciNet
Google Scholar
K. Zhang, W. Zuo, L. Zhang, FFDNet: Toward a fast and flexible solution for CNN-based image denoising. IEEE T. Image Process. 27(9), 4608–4622 (2018)
Article
ADS
MathSciNet
Google Scholar
S.H. Chan, X. Wang, O.A. Elgendy, Plug-and-play admm for image restoration: Fixed-point convergence and applications. IEEE Transact. Comput Imaging 3(1), 84–98 (2016)
Article
MathSciNet
Google Scholar
P. Nair, R.G. Gavaskar, K.N. Chaudhury, Fixed-point and objective convergence of plug-and-play algorithms. IEEE Transactions on Computational Imaging 7, 337–348 (2021)
Article
MathSciNet
Google Scholar
S. Jiang, J. Zhu, P. Song, C. Guo, Z. Bian, R. Wang, Y. Huang, S. Wang, H. Zhang, G. Zheng, Wide-field, high-resolution lensless on-chip microscopy via near-field blind ptychographic modulation. Lab Chip 20(6), 1058–1065 (2020)
Article
Google Scholar
K. Wei, A. Aviles-Rivero, J. Liang, Y. Fu, C.-B. Schönlieb, H. Huang, Tuning-free plug-and-play proximal algorithm for inverse imaging problems. In: International Conference on Machine Learning (ICML), pp. 10158–10169 (2020). PMLR
W. Luo, W. Alghamdi, Y.M. Lu, Optimal spectral initialization for signal recovery with applications to phase retrieval. IEEE T. Signal Proces. 67(9), 2347–2356 (2019)