C. Herring, Accidental degeneracy in the energy bands of crystals. Phys. Rev. 52, 365–373 (1937). https://doi.org/10.1103/PhysRev.52.365
Article
ADS
Google Scholar
N.P. Armitage, E.J. Mele, A. Vishwanath, Weyl and Dirac semimetals in three-dimensional solids. Rev. Mod. Phys. 90, 015001 (2018). https://doi.org/10.1103/RevModPhys.90.015001
Article
ADS
MathSciNet
Google Scholar
M. Srednicki, Quantum Field Theory (Cambridge University Press, Cambridge, 2007)
Book
MATH
Google Scholar
E.V. Gorbar, V.A. Miranskij, I.A. Shovkovy, P.O. Sukhachov, Electronic Properties of Dirac and Weyl Semimetals (World Scientific, Singapore, 2021)
Book
Google Scholar
N. Nagaosa, T. Morimoto, Y. Tokura, Transport, magnetic and optical properties of Weyl materials. Nat. Rev. Mater. 5, 621–636 (2020). https://doi.org/10.1038/s41578-020-0208-y
Article
ADS
Google Scholar
O.V. Kotov, Y.E. Lozovik, Giant tunable nonreciprocity of light in Weyl semimetals. Phys. Rev. B 98(19), 195446 (2018). https://doi.org/10.1103/PhysRevB.98.195446
Article
ADS
Google Scholar
V.S. Asadchy, C. Guo, B. Zhao, S. Fan, Sub-wavelength passive optical isolators using photonic structures based on Weyl semimetals. Adv. Opt. Mater. 8, 2000100 (2020). https://doi.org/10.1002/adom.202000100
Article
Google Scholar
Y. Park, V.S. Asadchy, B. Zhao, C. Guo, J. Wang, S. Fan, Violating Kirchhoff’s law of thermal radiation in semitransparent structures. ACS Photonics 8, 2417–2424 (2021). https://doi.org/10.1021/acsphotonics.1c00612
Article
Google Scholar
Z. Ji, W. Liu, S. Krylyuk, X. Fan, Z. Zhang, A. Pan, L. Feng, A. Davydov, R. Agarwal, Photocurrent detection of the orbital angular momentum of light. Science 368(6492), 763–767 (2020). https://doi.org/10.1126/science.aba9192
Article
ADS
MathSciNet
MATH
Google Scholar
J. Lai, J. Ma, Z. Fan, X. Song, P. Yu, Z. Liu, P. Zhang, Y. Shi, J. Cheng, D. Sun, Direct light orbital angular momentum detection in mid-infrared based on the type-II Weyl semimetal \({\rm TaIrTe_4}\). Adv. Mater. 34(29), 2201229 (2022). https://doi.org/10.1002/adma.202201229
Article
Google Scholar
L. Wu, S. Patankar, T. Morimoto, N.L. Nair, E. Thewalt, A. Little, J.G. Analytis, J.E. Moore, J. Orenstein, Giant anisotropic nonlinear optical response in transition metal monopnictide Weyl semimetals. Nat. Phys. 13(4), 350–355 (2017). https://doi.org/10.1038/nphys3969
Article
Google Scholar
S. Almutairi, Q. Chen, M. Tokman, A. Belyanin, Four-wave mixing in Weyl semimetals. Phys. Rev. B 101(23), 235156 (2020). https://doi.org/10.1103/PhysRevB.101.235156
Article
ADS
Google Scholar
J.L. Cheng, J.E. Sipe, S.W. Wu, Third-order optical nonlinearity of three-dimensional massless Dirac fermions. ACS Photonics 7, 2515–2526 (2020). https://doi.org/10.1021/acsphotonics.0c00836
Article
Google Scholar
B. Zhao, C. Guo, C.A.C. Garcia, P. Narang, S. Fan, Axion-field-enabled nonreciprocal thermal radiation in Weyl semimetals. Nano Lett. 20, 1923–1927 (2020). https://doi.org/10.1021/acs.nanolett.9b05179
Article
ADS
Google Scholar
Y. Tsurimaki, X. Qian, S. Pajovic, F. Han, M. Li, G. Chen, Large nonreciprocal absorption and emission of radiation in type-I Weyl semimetals with time reversal symmetry breaking. Phys. Rev. B 101, 165426 (2020). https://doi.org/10.1103/PhysRevB.101.165426
Article
ADS
Google Scholar
S. Pajovic, Y. Tsurimaki, X. Qian, G. Chen, Intrinsic nonreciprocal reflection and violation of Kirchhoff’s law of radiation in planar type-I magnetic Weyl semimetal surfaces. Phys. Rev. B 102, 165417 (2020). https://doi.org/10.1103/PhysRevB.102.165417
Article
ADS
Google Scholar
N.W. Ashcroft, N.D. Mermin, Solid State Physics (Holt, Rinehart and Winston, New York, 1976)
MATH
Google Scholar
G. Burns, Solid State Physics (Academic Press, Boston, 1990)
Google Scholar
S. Golin, Band structure of bismuth: Pseudopotential approach. Phys. Rev. 166, 643–651 (1968). https://doi.org/10.1103/PhysRev.166.643
Article
ADS
Google Scholar
Slonczewski, J.C., Weiss, P.R.: Band structure of graphite. Phys. Rev. 109, 272–279 (1958). https://doi.org/10.1103/PhysRev.109.272
H. Weyl, Elektron und gravitation I. Zeitschrift für Physik 56, 330–352 (1929). https://doi.org/10.1007/BF01339504
Article
ADS
MATH
Google Scholar
Super-Kamiokande. Collaboration, Evidence for oscillation of atmospheric neutrinos. Phys. Rev. Lett. 81, 1562–1567 (1998). https://doi.org/10.1103/PhysRevLett.81.1562
Article
Google Scholar
A. Vishwanath, Where the Weyl things are. Physics 8, 84 (2015)
Article
Google Scholar
H.B. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice: (I). Proof by homotopy theory. Nucl. Phys. B 185, 20–40 (1981). https://doi.org/10.1016/0550-3213(81)90361-8
Article
ADS
MathSciNet
Google Scholar
H.B. Nielsen, M. Ninomiya, Absence of neutrinos on a lattice: (II). Intuitive topological proof. Nucl. Phys. B 193, 173–194 (1981). https://doi.org/10.1016/0550-3213(81)90524-1
Article
ADS
MathSciNet
Google Scholar
H.B. Nielsen, M. Ninomiya, A no-go theorem for regularizing chiral fermions. Phys. Lett. B 105, 219–223 (1981). https://doi.org/10.1016/0370-2693(81)91026-1
Article
ADS
Google Scholar
X.-Q. Sun, M. Xiao, T. Bzdušek, S.-C. Zhang, S. Fan, Three-dimensional chiral lattice fermion in floquet systems. Phys. Rev. Lett. 121, 196401 (2018). https://doi.org/10.1103/PhysRevLett.121.196401
Article
ADS
Google Scholar
J. von Neuman, E. Wigner, Uber merkwürdige diskrete Eigenwerte. Uber das Verhalten von Eigenwerten bei adiabatischen Prozessen. Physikalische Zeitschrift 30, 467–470 (1929)
ADS
Google Scholar
D. Vanderbilt, Berry Phases in Electronic Structure Theory (Cambridge University Press, Cambridge, 2018)
Book
MATH
Google Scholar
I. Belopolski, S.-Y. Xu, D.S. Sanchez, G. Chang, C. Guo, M. Neupane, H. Zheng, C.-C. Lee, S.-M. Huang, G. Bian, N. Alidoust, T.-R. Chang, B. Wang, X. Zhang, A. Bansil, H.-T. Jeng, H. Lin, S. Jia, M.Z. Hasan, Criteria for directly detecting topological Fermi arcs in Weyl semimetals. Phys. Rev. Lett. 116, 066802 (2016). https://doi.org/10.1103/PhysRevLett.116.066802
Article
ADS
Google Scholar
S.-Y. Xu, I. Belopolski, D.S. Sanchez, M. Neupane, G. Chang, K. Yaji, Z. Yuan, C. Zhang, K. Kuroda, G. Bian, C. Guo, H. Lu, T.-R. Chang, N. Alidoust, H. Zheng, C.-C. Lee, S.-M. Huang, C.-H. Hsu, H.-T. Jeng, A. Bansil, T. Neupert, F. Komori, T. Kondo, S. Shin, H. Lin, S. Jia, M.Z. Hasan, Spin polarization and texture of the Fermi arcs in the Weyl fermion semimetal TaAs. Phys. Rev. Lett. 116, 096801 (2016). https://doi.org/10.1103/PhysRevLett.116.096801
Article
ADS
Google Scholar
B. Yan, C. Felser, Topological materials: Weyl semimetals. Ann. Rev. Condens. Matter Phys. 8(1), 337–354 (2017). https://doi.org/10.1146/annurev-conmatphys-031016-025458
Article
ADS
Google Scholar
H.A. Kramers, Théorie générale de la rotation paramagnétique dans les cristaux. Proceedings Koninklijke Akademie van Wetenschappen 33, 959–972 (1930)
MATH
Google Scholar
A.A. Burkov, L. Balents, Weyl semimetal in a topological insulator multilayer. Phys. Rev. Lett. 107, 127205 (2011). https://doi.org/10.1103/PhysRevLett.107.127205
Article
ADS
Google Scholar
S.-Y. Xu, I. Belopolski, N. Alidoust, M. Neupane, G. Bian, C. Zhang, R. Sankar, G. Chang, Z. Yuan, C.-C. Lee, S.-M. Huang, H. Zheng, J. Ma, D.S. Sanchez, B. Wang, A. Bansil, F. Chou, P.P. Shibayev, H. Lin, S. Jia, M.Z. Hasan, Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015). https://doi.org/10.1126/science.aaa9297
Article
ADS
Google Scholar
B.Q. Lv, H.M. Weng, B.B. Fu, X.P. Wang, H. Miao, J. Ma, P. Richard, X.C. Huang, L.X. Zhao, G.F. Chen, Z. Fang, X. Dai, T. Qian, H. Ding, Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015). https://doi.org/10.1103/PhysRevX.5.031013
Article
Google Scholar
L. Lu, Z. Wang, D. Ye, L. Ran, L. Fu, J.D. Joannopoulos, M. Soljačić, Experimental observation of Weyl points. Science 349, 622–624 (2015). https://doi.org/10.1126/science.aaa9273
Article
ADS
MathSciNet
MATH
Google Scholar
Xu, S.-Y., Belopolski, I., Sanchez, D.S., Zhang, C., Chang, G., Guo, C., Bian, G., Yuan, Z., Lu, H., Chang, T.-R., Shibayev, P.P., Prokopovych, M.L., Alidoust, N., Zheng, H., Lee, C.-C., Huang, S.-M., Sankar, R., Chou, F., Hsu, C.-H., Jeng, H.-T., Bansil, A., Neupert, T., Strocov, V.N., Lin, H., Jia, S., Hasan, M.Z.: Experimental discovery of a topological Weyl semimetal state in TaP. Science Advances 1, 1501092 (2015). Chap. Research Article. https://doi.org/10.1126/sciadv.1501092
C.-L. Zhang, S.-Y. Xu, C.M. Wang, Z. Lin, Z.Z. Du, C. Guo, C.-C. Lee, H. Lu, Y. Feng, S.-M. Huang, G. Chang, C.-H. Hsu, H. Liu, H. Lin, L. Li, C. Zhang, J. Zhang, X.-C. Xie, T. Neupert, M.Z. Hasan, H.-Z. Lu, J. Wang, S. Jia, Magnetic-tunnelling-induced Weyl node annihilation in TaP. Nat. Phys. 13, 979–986 (2017). https://doi.org/10.1038/nphys4183
Article
Google Scholar
S.-Y. Xu, N. Alidoust, I. Belopolski, Z. Yuan, G. Bian, T.-R. Chang, H. Zheng, V.N. Strocov, D.S. Sanchez, G. Chang, C. Zhang, D. Mou, Y. Wu, L. Huang, C.-C. Lee, S.-M. Huang, B. Wang, A. Bansil, H.-T. Jeng, T. Neupert, A. Kaminski, H. Lin, S. Jia, M. Zahid Hasan, Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015). https://doi.org/10.1038/nphys3437
Article
Google Scholar
H. Zheng, S.-Y. Xu, G. Bian, C. Guo, G. Chang, D.S. Sanchez, I. Belopolski, C.-C. Lee, S.-M. Huang, X. Zhang, R. Sankar, N. Alidoust, T.-R. Chang, F. Wu, T. Neupert, F. Chou, H.-T. Jeng, N. Yao, A. Bansil, S. Jia, H. Lin, M.Z. Hasan, Atomic-scale visualization of quantum interference on a Weyl semimetal surface by scanning tunneling microscopy. ACS Nano 10, 1378–1385 (2016). https://doi.org/10.1021/acsnano.5b06807
Article
Google Scholar
H. Zheng, G. Chang, S.-M. Huang, C. Guo, X. Zhang, S. Zhang, J. Yin, S.-Y. Xu, I. Belopolski, N. Alidoust, D.S. Sanchez, G. Bian, T.-R. Chang, T. Neupert, H.-T. Jeng, S. Jia, H. Lin, M.Z. Hasan, Mirror protected Dirac fermions on a Weyl semimetal NbP surface. Phys. Rev. Lett. 119, 196403 (2017). https://doi.org/10.1103/PhysRevLett.119.196403
Article
ADS
Google Scholar
J. Gooth, A.C. Niemann, T. Meng, A.G. Grushin, K. Landsteiner, B. Gotsmann, F. Menges, M. Schmidt, C. Shekhar, V. Süß, R. Hühne, B. Rellinghaus, C. Felser, B. Yan, K. Nielsch, Experimental signatures of the mixed axial–gravitational anomaly in the Weyl semimetal NbP. Nature 547, 324–327 (2017). https://doi.org/10.1038/nature23005
Article
ADS
Google Scholar
N. Morali, R. Batabyal, P.K. Nag, E. Liu, Q. Xu, Y. Sun, B. Yan, C. Felser, N. Avraham, H. Beidenkopf, Fermi-arc diversity on surface terminations of the magnetic Weyl semimetal Co\(_3\)Sn\(_2\)S\(_2\). Science 365(6459), 1286–1291 (2019). https://doi.org/10.1126/science.aav2334
Article
ADS
Google Scholar
I. Belopolski, K. Manna, D.S. Sanchez, G. Chang, B. Ernst, J. Yin, S.S. Zhang, T. Cochran, N. Shumiya, H. Zheng, B. Singh, G. Bian, D. Multer, M. Litskevich, X. Zhou, S.-M. Huang, B. Wang, T.-R. Chang, S.-Y. Xu, A. Bansil, C. Felser, H. Lin, M.Z. Hasan, Discovery of topological Weyl fermion lines and drumhead surface states in a room temperature magnet. Science 365(6459), 1278–1281 (2019). https://doi.org/10.1126/science.aav2327
Article
ADS
Google Scholar
D.F. Liu, A.J. Liang, E.K. Liu, Q.N. Xu, Y.W. Li, C. Chen, D. Pei, W.J. Shi, S.K. Mo, P. Dudin, T. Kim, C. Cacho, G. Li, Y. Sun, L.X. Yang, Z.K. Liu, S.S.P. Parkin, C. Felser, Y.L. Chen, Magnetic Weyl semimetal phase in a Kagomé crystal. Science 365(6459), 1282–1285 (2019). https://doi.org/10.1126/science.aav2873
Article
ADS
Google Scholar
D.J. Fisher, Topological Semimetals (Materials Research Forum LLC, Millersville, 2019)
Book
Google Scholar
J. Xiong, S.K. Kushwaha, T. Liang, J.W. Krizan, M. Hirschberger, W. Wang, R.J. Cava, N.P. Ong, Evidence for the chiral anomaly in the Dirac semimetal Na3Bi. Science 350, 413–416 (2015). https://doi.org/10.1126/science.aac6089
Article
ADS
MathSciNet
MATH
Google Scholar
C.-L. Zhang, S.-Y. Xu, I. Belopolski, Z. Yuan, Z. Lin, B. Tong, G. Bian, N. Alidoust, C.-C. Lee, S.-M. Huang, T.-R. Chang, G. Chang, C.-H. Hsu, H.-T. Jeng, M. Neupane, D.S. Sanchez, H. Zheng, J. Wang, H. Lin, C. Zhang, H.-Z. Lu, S.-Q. Shen, T. Neupert, M. Zahid Hasan, S. Jia, Signatures of the Adler–Bell–Jackiw chiral anomaly in a Weyl fermion semimetal. Nat. Commun. 7, 10735 (2016). https://doi.org/10.1038/ncomms10735
Article
ADS
Google Scholar
N.P. Ong, S. Liang, Experimental signatures of the chiral anomaly in Dirac-Weyl semimetals. Nat. Rev. Phys. 3, 394–404 (2021). https://doi.org/10.1038/s42254-021-00310-9
Article
Google Scholar
C. Zhang, C. Guo, H. Lu, X. Zhang, Z. Yuan, Z. Lin, J. Wang, S. Jia, Large magnetoresistance over an extended temperature regime in monophosphides of tantalum and niobium. Phys. Rev. B 92, 041203 (2015). https://doi.org/10.1103/PhysRevB.92.041203
Article
ADS
Google Scholar
A. Westström, T. Ojanen, Designer curved-space geometry for relativistic fermions in Weyl metamaterials. Phys. Rev. X 7, 041026 (2017). https://doi.org/10.1103/PhysRevX.7.041026
Article
Google Scholar
A. Cortijo, Y. Ferreirós, K. Landsteiner, M.A.H. Vozmediano, Elastic gauge fields in Weyl semimetals. Phys. Rev. Lett. 115, 177202 (2015). https://doi.org/10.1103/PhysRevLett.115.177202
Article
ADS
Google Scholar
D.I. Pikulin, A. Chen, M. Franz, Chiral anomaly from strain-induced gauge fields in Dirac and Weyl semimetals. Phys. Rev. X 6, 041021 (2016). https://doi.org/10.1103/PhysRevX.6.041021
Article
Google Scholar
Z. Song, X. Dai, Hear the sound of Weyl fermions. Phys. Rev. X 9, 021053 (2019). https://doi.org/10.1103/PhysRevX.9.021053
Article
Google Scholar
P.E.C. Ashby, J.P. Carbotte, Magneto-optical conductivity of Weyl semimetals. Phys. Rev. B 87, 245131 (2013). https://doi.org/10.1103/PhysRevB.87.245131
Article
ADS
Google Scholar
M. Stålhammar, J. Larana-Aragon, J. Knolle, E.J. Bergholtz, Magneto-optical conductivity in generic Weyl semimetals. Phys. Rev. B 102, 235134 (2020). https://doi.org/10.1103/PhysRevB.102.235134
Article
ADS
Google Scholar
S. Polatkan, M.O. Goerbig, J. Wyzula, R. Kemmler, L.Z. Maulana, B.A. Piot, I. Crassee, A. Akrap, C. Shekhar, C. Felser, M. Dressel, A.V. Pronin, M. Orlita, Magneto-optics of a Weyl semimetal beyond the conical band approximation: case study of TaP. Phys. Rev. Lett. 124, 176402 (2020). https://doi.org/10.1103/PhysRevLett.124.176402
Article
ADS
Google Scholar
O. Vafek, A. Vishwanath, Dirac fermions in solids: from high-Tc cuprates and graphene to topological insulators and Weyl semimetals. Ann. Rev. Condens. Matter Phys. 5, 83–112 (2014). https://doi.org/10.1146/annurev-conmatphys-031113-133841
Article
ADS
Google Scholar
A.A. Burkov, Weyl metals. Ann. Rev. Condens. Matter Phys. 9, 359–378 (2018). https://doi.org/10.1146/annurev-conmatphys-033117-054129
Article
ADS
Google Scholar
W. Witczak-Krempa, G. Chen, Y.B. Kim, L. Balents, Correlated quantum phenomena in the strong spin-orbit regime. Ann. Rev. Condens. Matter Phys. 5, 57–82 (2014). https://doi.org/10.1146/annurev-conmatphys-020911-125138
Article
ADS
Google Scholar
L. Šmejkal, T. Jungwirth, J. Sinova, Route towards Dirac and Weyl antiferromagnetic spintronics. Physica Status Solidi (RRL) Rapid Res Lett 11, 1700044 (2017). https://doi.org/10.1002/pssr.201700044
Article
ADS
Google Scholar
G.P. Mikitik, Y.V. Sharlai, Magnetic susceptibility of topological semimetals. J. Low Temp. Phys. 197, 272–309 (2019). https://doi.org/10.1007/s10909-019-02225-3
Article
ADS
Google Scholar
P. Hosur, X. Qi, Recent developments in transport phenomena in Weyl semimetals. C R Phys. 14, 857–870 (2013). https://doi.org/10.1016/j.crhy.2013.10.010
Article
ADS
Google Scholar
A.A. Burkov, Chiral anomaly and transport in Weyl metals. J. Phys. Condens. Matter 27, 113201 (2015). https://doi.org/10.1088/0953-8984/27/11/113201
Article
ADS
Google Scholar
S. Wang, B.-C. Lin, A.-Q. Wang, D.-P. Yu, Z.-M. Liao, Quantum transport in Dirac and Weyl semimetals: a review. Adv. Phys. X 2, 518–544 (2017). https://doi.org/10.1080/23746149.2017.1327329
Article
Google Scholar
E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, P.O. Sukhachov, Anomalous transport properties of Dirac and Weyl semimetals (Review Article). Low Temp. Phys. 44, 487–505 (2018). https://doi.org/10.1063/1.5037551
Article
ADS
Google Scholar
H. Wang, J. Wang, Electron transport in Dirac and Weyl semimetals. Chin. Phys. B 27(107402), 2020030514010695 (2018)
Google Scholar
J. Hu, S.-Y. Xu, N. Ni, Z. Mao, Transport of topological semimetals. Annu. Rev. Mater. Res. 49, 207–252 (2019). https://doi.org/10.1146/annurev-matsci-070218-010023
Article
ADS
Google Scholar
C.-K. Chiu, J.C.Y. Teo, A.P. Schnyder, S. Ryu, Classification of topological quantum matter with symmetries. Rev. Mod. Phys. 88, 035005 (2016). https://doi.org/10.1103/RevModPhys.88.035005
Article
ADS
Google Scholar
E. Witten, Three lectures on topological phases of matter. La Rivista del Nuovo Cimento 39, 313–370 (2016). https://doi.org/10.1393/ncr/i2016-10125-3
Article
ADS
Google Scholar
H. Weng, X. Dai, Z. Fang, Topological semimetals predicted from first-principles calculations. J. Phys. Condens. Matter 28, 303001 (2016). https://doi.org/10.1088/0953-8984/28/30/303001
Article
Google Scholar
M.Z. Hasan, S.-Y. Xu, G. Bian, Topological insulators, topological superconductors and Weyl fermion semimetals: discoveries, perspectives and outlooks. Phys. Scr. T164, 014001 (2015). https://doi.org/10.1088/0031-8949/2015/T164/014001
Article
ADS
Google Scholar
M.Z. Hasan, S.-Y. Xu, I. Belopolski, S.-M. Huang, Discovery of Weyl fermion semimetals and topological Fermi arc states. Ann. Rev. Condens. Matter Phys. 8, 289–309 (2017). https://doi.org/10.1146/annurev-conmatphys-031016-025225
Article
ADS
Google Scholar
B. Yan, C. Felser, Topological materials: Weyl semimetals. Ann. Rev. Condens. Matter Phys. 8, 337–354 (2017). https://doi.org/10.1146/annurev-conmatphys-031016-025458
Article
ADS
Google Scholar
H. Zheng, M. Zahid Hasan, Quasiparticle interference on type-I and type-II Weyl semimetal surfaces: a review. Adv. Phys. X 3, 1466661 (2018). https://doi.org/10.1080/23746149.2018.1466661
Article
Google Scholar
N. Nagaosa, J. Sinova, S. Onoda, A.H. MacDonald, N.P. Ong, Anomalous Hall effect. Rev. Mod. Phys. 82, 1539–1592 (2010). https://doi.org/10.1103/RevModPhys.82.1539
Article
ADS
Google Scholar
E.V. Gorbar, V.A. Miransky, I.A. Shovkovy, Chiral asymmetry of the Fermi surface in dense relativistic matter in a magnetic field. Phys. Rev. C (2009). https://doi.org/10.1103/PhysRevC.80.032801
Article
MATH
Google Scholar
A.A. Zyuzin, A.A. Burkov, Topological response in Weyl semimetals and the chiral anomaly. Phys. Rev. B 86(11), 115133 (2012). https://doi.org/10.1103/PhysRevB.86.115133
Article
ADS
Google Scholar
S. Nie, T. Hashimoto, F.B. Prinz, Magnetic Weyl semimetal in K\(_2\)Mn\(_3\)(AsO\(_4\))\(_3\) with the minimum number of Weyl points. Phys. Rev. Lett. 128, 176401 (2022). https://doi.org/10.1103/PhysRevLett.128.176401
Article
ADS
Google Scholar
J.-R. Soh, F. de Juan, M.G. Vergniory, N.B.M. Schröter, M.C. Rahn, D.Y. Yan, J. Jiang, M. Bristow, P.A. Reiss, J.N. Blandy, Y.F. Guo, Y.G. Shi, T.K. Kim, A. McCollam, S.H. Simon, Y. Chen, A.I. Coldea, A.T. Boothroyd, Ideal Weyl semimetal induced by magnetic exchange. Phys. Rev. B 100, 201102 (2019). https://doi.org/10.1103/PhysRevB.100.201102
Article
ADS
Google Scholar
A. Zangwill, Modern Electrodynamics (Cambridge University Press, Cambridge, 2013)
MATH
Google Scholar
F. Wilczek, Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987). https://doi.org/10.1103/PhysRevLett.58.1799
Article
ADS
Google Scholar
T.-P. Cheng, L.-F. Li, Gauge Theory of Elementary Particle Physics (Oxford University Press, Oxford, 1984)
Google Scholar
G.E. Volovik, The Universe in a Helium Droplet (Oxford University Press, Oxford, 2009)
Book
Google Scholar
X.-L. Qi, T.L. Hughes, S.-C. Zhang, Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008). https://doi.org/10.1103/PhysRevB.78.195424
Article
ADS
Google Scholar
X.-L. Qi, S.-C. Zhang, Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011). https://doi.org/10.1103/RevModPhys.83.1057
Article
ADS
Google Scholar
B.A. Bernevig, T.L. Hughes, Topological Insulators and Topological Superconductors (Princeton University Press, Princeton, 2013)
Book
MATH
Google Scholar
A.G. Grushin, Consequences of a condensed matter realization of Lorentz-violating QED in Weyl semi-metals. Phys. Rev. D 86, 045001 (2012). https://doi.org/10.1103/PhysRevD.86.045001
Article
ADS
Google Scholar
P. Goswami, S. Tewari, Axionic field theory of (3+1)-dimensional Weyl semimetals. Phys. Rev. B 88, 245107 (2013). https://doi.org/10.1103/PhysRevB.88.245107
Article
ADS
Google Scholar
M.M. Vazifeh, M. Franz, Electromagnetic response of Weyl semimetals. Phys. Rev. Lett. 111, 027201 (2013). https://doi.org/10.1103/PhysRevLett.111.027201
Article
ADS
Google Scholar
K. Deng, J.S. Van Dyke, D. Minic, J.J. Heremans, E. Barnes, Exploring self-consistency of the equations of axion electrodynamics in Weyl semimetals. Phys. Rev. B 104, 075202 (2021). https://doi.org/10.1103/PhysRevB.104.075202
Article
ADS
Google Scholar
Armitage, N.P., Wu, L.: On the matter of topological insulators as magnetoelectrics. SciPost Phys. 6, 046 (2019). https://doi.org/10.21468/SciPostPhys.6.4.046
D. Tong, Gauge Theory. Lecture Notes (DAMTP Cambridge, Cambridge, 2018)
Google Scholar
A. Karch, Electric-magnetic duality and topological insulators. Phys. Rev. Lett. 103, 171601 (2009). https://doi.org/10.1103/PhysRevLett.103.171601
Article
ADS
MathSciNet
Google Scholar
J. Hofmann, S. Das Sarma, Surface plasmon polaritons in topological Weyl semimetals. Phys. Rev. B 93(24), 241402 (2016). https://doi.org/10.1103/PhysRevB.93.241402
Article
ADS
Google Scholar
E. Witten, Fermion path integrals and topological phases. Rev. Mod. Phys. 88, 035001 (2016). https://doi.org/10.1103/RevModPhys.88.035001
Article
ADS
Google Scholar
K. Fujikawa, H. Suzuki, Path Integrals and Quantum Anomalies (Clarendon Press, Oxford, 2013)
MATH
Google Scholar
C. Rylands, A. Parhizkar, A.A. Burkov, V. Galitski, Chiral anomaly in interacting condensed matter systems. Phys. Rev. Lett. 126, 185303 (2021). https://doi.org/10.1103/PhysRevLett.126.185303
Article
ADS
MathSciNet
Google Scholar
R. Kubo, Statistical-mechanical theory of irreversible processes. I. General theory and simple applications to magnetic and conduction problems. J. Phys. Soc. Jpn. 12, 570–586 (1957). https://doi.org/10.1143/JPSJ.12.570
Article
ADS
MathSciNet
Google Scholar
D.A. Greenwood, The Boltzmann equation in the theory of electrical conduction in metals. Proc. Phys. Soc. 71, 585–596 (1958). https://doi.org/10.1088/0370-1328/71/4/306
Article
ADS
MathSciNet
MATH
Google Scholar
L.L. Moseley, T. Lukes, A simplified derivation of the Kubo-Greenwood formula. Am. J. Phys. 46, 676–677 (1978). https://doi.org/10.1119/1.11229
Article
ADS
Google Scholar
H.A. Lorentz, The theorem of Poynting concerning the energy in the electromagnetic field and two general propositions concerning the propagation of light. Amsterdammer Akademie der Wetenschappen 4, 176 (1896)
MATH
Google Scholar
R.J. Potton, Reciprocity in optics. Rep. Prog. Phys. 67(5), 717–754 (2004). https://doi.org/10.1088/0034-4885/67/5/R03
Article
ADS
Google Scholar
C. Caloz, A. Alù, S. Tretyakov, D. Sounas, K. Achouri, Z.-L. Deck-Léger, Electromagnetic nonreciprocity. Phys. Rev. Appl. 10(4), 047001 (2018). https://doi.org/10.1103/PhysRevApplied.10.047001
Article
ADS
Google Scholar
V.S. Asadchy, M.S. Mirmoosa, A. Díaz-Rubio, S. Fan, S.A. Tretyakov, Tutorial on electromagnetic nonreciprocity and its origins. Proc. IEEE 108, 1684–1727 (2020). https://doi.org/10.1109/JPROC.2020.3012381
Article
Google Scholar
C. Guo, Z. Zhao, S. Fan, Internal transformations and internal symmetries in linear photonic systems. Phys. Rev. A 105, 023509 (2022). https://doi.org/10.1103/PhysRevA.105.023509
Article
ADS
MathSciNet
Google Scholar
H.A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, New Jersey, 1984)
Google Scholar
C. Guo, S. Fan, Reciprocity constraints on reflection. Phys. Rev. Lett. 128, 256101 (2022). https://doi.org/10.1103/PhysRevLett.128.256101
Article
ADS
MathSciNet
Google Scholar
G. Kirchhoff, Ueber das Verhältniss zwischen dem Emissionsvermögen und dem Absorptionsvermögen der Körper für Wärme und Licht. Ann. Phys. 185(2), 275–301 (1860). https://doi.org/10.1002/andp.18601850205
Article
Google Scholar
J.-J. Greffet, P. Bouchon, G. Brucoli, F. Marquier, Light emission by nonequilibrium bodies: local Kirchhoff law. Phys. Rev. X 8, 021008 (2018). https://doi.org/10.1103/PhysRevX.8.021008
Article
Google Scholar
Z. Yu, S. Fan, Complete optical isolation created by indirect interband photonic transitions. Nat. Photonics 3(2), 91–94 (2009). https://doi.org/10.1038/nphoton.2008.273
Article
ADS
Google Scholar
D. Jalas, A. Petrov, M. Eich, W. Freude, S. Fan, Z. Yu, R. Baets, M. Popović, A. Melloni, J.D. Joannopoulos, M. Vanwolleghem, C.R. Doerr, H. Renner, What is—and what is not—an optical isolator. Nat. Photonics 7, 579–582 (2013). https://doi.org/10.1038/nphoton.2013.185
Article
ADS
Google Scholar
Z. Wang, S. Fan, Optical circulators in two-dimensional magneto-optical photonic crystals. Opt. Lett. 30, 1989–1991 (2005). https://doi.org/10.1364/OL.30.001989
Article
ADS
Google Scholar
Z. Wang, Y. Chong, J.D. Joannopoulos, M. Soljačić, Observation of unidirectional backscattering-immune topological electromagnetic states. Nature 461, 772–775 (2009). https://doi.org/10.1038/nature08293
Article
ADS
Google Scholar
K. Fang, Z. Yu, S. Fan, Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photonics 6(11), 782–787 (2012). https://doi.org/10.1038/nphoton.2012.236
Article
ADS
Google Scholar
L. Zhu, S. Fan, Near-complete violation of detailed balance in thermal radiation. Phys. Rev. B 90(22), 220301 (2014). https://doi.org/10.1103/PhysRevB.90.220301
Article
ADS
Google Scholar
C. Guo, B. Zhao, S. Fan, Adjoint Kirchhoff’s law and general symmetry implications for all thermal emitters. Phys. Rev. X 12, 021023 (2022). https://doi.org/10.1103/PhysRevX.12.021023
Article
Google Scholar
A.K. Zvezdin, V.A. Kotov, Modern Magnetooptics and Magnetooptical Materials (CRC Press, New York, 1997)
Book
Google Scholar
X. Han, A. Markou, J. Stensberg, Y. Sun, C. Felser, L. Wu, Giant intrinsic anomalous terahertz Faraday rotation in the magnetic Weyl semimetal Co\(_2\)MnGa at room temperature. Phys. Rev. B 105, 174406 (2022). https://doi.org/10.1103/PhysRevB.105.174406
Article
ADS
Google Scholar
H. Huang, Y. Fan, B.-I. Wu, A.J. Kong, Tunable TE/TM wave splitter using a gyrotropic slab. Prog. Electromagn. Res. 85, 367–380 (2008). https://doi.org/10.2528/PIER08080303
Article
Google Scholar
S.O. Abdol, B. Abdollahipour, A.S. Vala, Surface plasmon polaritons in a waveguide composed of Weyl semimetals with different symmetries. J. Phys. D Appl. Phys. 53(4), 045105 (2019). https://doi.org/10.1088/1361-6463/ab52ee
Article
Google Scholar
P.E.C. Ashby, J.P. Carbotte, Chiral anomaly and optical absorption in Weyl semimetals. Phys. Rev. B 89, 245121 (2014). https://doi.org/10.1103/PhysRevB.89.245121
Article
ADS
Google Scholar
J. Huang, L. Wang, D.-X. Yao, A semiclassical approach to surface Fermi arcs in Weyl semimetals. Sci. China Phys. Mech. Astron. 65, 266811 (2022). https://doi.org/10.1007/s11433-021-1884-x
Article
ADS
Google Scholar
Q. Chen, A.R. Kutayiah, I. Oladyshkin, M. Tokman, A. Belyanin, Optical properties and electromagnetic modes of Weyl semimetals. Phys. Rev. B 99(7), 075137 (2019). https://doi.org/10.1103/PhysRevB.99.075137
Article
ADS
Google Scholar
J.C.W. Song, M.S. Rudner, Fermi arc plasmons in Weyl semimetals. Phys. Rev. B 96, 205443 (2017). https://doi.org/10.1103/PhysRevB.96.205443
Article
ADS
Google Scholar
ŽB. Lošić, The coupling effects of surface plasmons and Fermi arc plasmons in Weyl semimetals. J. Phys.: Condens. Matter 31, 285001 (2019). https://doi.org/10.1088/1361-648X/ab1734
Article
Google Scholar
J.S. Gomez-Diaz, M. Tymchenko, A. Alù, Hyperbolic plasmons and topological transitions over uniaxial metasurfaces. Phys. Rev. Lett. 114, 233901 (2015). https://doi.org/10.1103/PhysRevLett.114.233901
Article
ADS
Google Scholar
F. Zhang, Y. Gao, W. Zhang, Three-dimensional topological plasmons in Weyl semimetals. Phys. Rev. B 104, 205141 (2021). https://doi.org/10.1103/PhysRevB.104.205141
Article
ADS
Google Scholar
A.A. Soluyanov, D. Gresch, Z. Wang, Q. Wu, M. Troyer, X. Dai, B.A. Bernevig, Type-II Weyl semimetals. Nature 527, 495–498 (2015). https://doi.org/10.1038/nature15768
Article
ADS
Google Scholar
I. Lifshitz, Anomalies of electron characteristics of a metal in the high pressure region. Soviet Phys. JETP 11, 1130–1135 (1960)
Google Scholar
G.E. Volovik, Topological Lifshitz transitions. Low Temp. Phys. 43, 47–55 (2017). https://doi.org/10.1063/1.4974185
Article
ADS
Google Scholar
G.E. Volovik, Exotic Lifshitz transitions in topological materials. Phys. Usp. 61, 89 (2018). https://doi.org/10.3367/UFNe.2017.01.038218
Article
ADS
Google Scholar
P.K. Das, D.D. Sante, F. Cilento, C. Bigi, D. Kopic, D. Soranzio, A. Sterzi, J.A. Krieger, I. Vobornik, J. Fujii, T. Okuda, V.N. Strocov, M.B.H. Breese, F. Parmigiani, G. Rossi, S. Picozzi, R. Thomale, G. Sangiovanni, R.J. Cava, G. Panaccione, Electronic properties of candidate type-II Weyl semimetal WTe\(_2\). A review perspective. Electron. Struct. 1, 014003 (2019). https://doi.org/10.1088/2516-1075/ab0835
Article
ADS
Google Scholar
Y. Wang, E. Liu, H. Liu, Y. Pan, L. Zhang, J. Zeng, Y. Fu, M. Wang, K. Xu, Z. Huang, Z. Wang, H.-Z. Lu, D. Xing, B. Wang, X. Wan, F. Miao, Gate-tunable negative longitudinal magnetoresistance in the predicted type-II Weyl semimetal WTe\(_2\). Nat. Commun. 7, 13142 (2016). https://doi.org/10.1038/ncomms13142
Article
ADS
Google Scholar
Y. Wu, D. Mou, N.H. Jo, K. Sun, L. Huang, S.L. Bud’ko, P.C. Canfield, A. Kaminski, Observation of Fermi arcs in the type-II Weyl semimetal candidate WTe\(_2\). Phys. Rev. B 94, 121113 (2016). https://doi.org/10.1103/PhysRevB.94.121113
Article
ADS
Google Scholar
P. Li, Y. Wen, X. He, Q. Zhang, C. Xia, Z.-M. Yu, S.A. Yang, Z. Zhu, H.N. Alshareef, X.-X. Zhang, Evidence for topological type-II Weyl semimetal WTe\(_2\). Nat. Commun. 8, 2150 (2017). https://doi.org/10.1038/s41467-017-02237-1
Article
ADS
Google Scholar
Y. Sun, S.-C. Wu, M.N. Ali, C. Felser, B. Yan, Prediction of Weyl semimetal in orthorhombic MoTe\(_2\). Phys. Rev. B 92, 161107 (2015). https://doi.org/10.1103/PhysRevB.92.161107
Article
ADS
Google Scholar
T.-R. Chang, S.-Y. Xu, G. Chang, C.-C. Lee, S.-M. Huang, B. Wang, G. Bian, H. Zheng, D.S. Sanchez, I. Belopolski, N. Alidoust, M. Neupane, A. Bansil, H.-T. Jeng, H. Lin, M. Zahid Hasan, Prediction of an arc-tunable Weyl Fermion metallic state in Mo\(_x\)W\(_{1-x}\)Te\(_2\). Nat. Commun. 7, 10639 (2016). https://doi.org/10.1038/ncomms10639
Article
ADS
Google Scholar
K. Deng, G. Wan, P. Deng, K. Zhang, S. Ding, E. Wang, M. Yan, H. Huang, H. Zhang, Z. Xu, J. Denlinger, A. Fedorov, H. Yang, W. Duan, H. Yao, Y. Wu, S. Fan, H. Zhang, X. Chen, S. Zhou, Experimental observation of topological Fermi arcs in type-II Weyl semimetal MoTe\(_2\). Nat. Phys. 12, 1105–1110 (2016). https://doi.org/10.1038/nphys3871
Article
Google Scholar
L. Huang, T.M. McCormick, M. Ochi, Z. Zhao, M.-T. Suzuki, R. Arita, Y. Wu, D. Mou, H. Cao, J. Yan, N. Trivedi, A. Kaminski, Spectroscopic evidence for a type II Weyl semimetallic state in MoTe\(_2\). Nat. Mater. 15, 1155–1160 (2016). https://doi.org/10.1038/nmat4685
Article
ADS
Google Scholar
Z. Wang, D. Gresch, A.A. Soluyanov, W. Xie, S. Kushwaha, X. Dai, M. Troyer, R.J. Cava, B.A. Bernevig, MoTe\(_2\): a type-II Weyl topological metal. Phys. Rev. Lett. 117, 056805 (2016). https://doi.org/10.1103/PhysRevLett.117.056805
Article
ADS
Google Scholar
M.N. Ali, J. Xiong, S. Flynn, J. Tao, Q.D. Gibson, L.M. Schoop, T. Liang, N. Haldolaarachchige, M. Hirschberger, N.P. Ong, R.J. Cava, Large, non-saturating magnetoresistance in WTe2. Nature 514, 205–208 (2014). https://doi.org/10.1038/nature13763
Article
ADS
Google Scholar
C. Wang, Y. Zhang, J. Huang, S. Nie, G. Liu, A. Liang, Y. Zhang, B. Shen, J. Liu, C. Hu, Y. Ding, D. Liu, Y. Hu, S. He, L. Zhao, L. Yu, J. Hu, J. Wei, Z. Mao, Y. Shi, X. Jia, F. Zhang, S. Zhang, F. Yang, Z. Wang, Q. Peng, H. Weng, X. Dai, Z. Fang, Z. Xu, C. Chen, X.J. Zhou, Observation of Fermi arc and its connection with bulk states in the candidate type-II Weyl semimetal WTe\(_2\). Phys. Rev. B 94, 241119 (2016). https://doi.org/10.1103/PhysRevB.94.241119
Article
ADS
Google Scholar
C. Wang, S. Huang, Q. Xing, Y. Xie, C. Song, F. Wang, H. Yan, Van der Waals thin films of WTe\(_2\) for natural hyperbolic plasmonic surfaces. Nat. Commun. 11, 1158 (2020). https://doi.org/10.1038/s41467-020-15001-9
Article
ADS
Google Scholar
A. Poddubny, I. Iorsh, P. Belov, Y. Kivshar, Hyperbolic metamaterials. Nat. Photonics 7, 948–957 (2013). https://doi.org/10.1038/nphoton.2013.243
Article
ADS
Google Scholar
Y. Guo, Z. Jacob, Thermal hyperbolic metamaterials. Opt. Express 21, 15014–15019 (2013). https://doi.org/10.1364/OE.21.015014
Article
ADS
Google Scholar
P. Shekhar, J. Atkinson, Z. Jacob, Hyperbolic metamaterials: fundamentals and applications. Nano Conver. 1, 14 (2014). https://doi.org/10.1186/s40580-014-0014-6
Article
Google Scholar
L. Ferrari, C. Wu, D. Lepage, X. Zhang, Z. Liu, Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 40, 1–40 (2015). https://doi.org/10.1016/j.pquantelec.2014.10.001
Article
Google Scholar
F. Peragut, L. Cerutti, A. Baranov, J.P. Hugonin, T. Taliercio, Y.D. Wilde, J.J. Greffet, Hyperbolic metamaterials and surface plasmon polaritons. Optica 4, 1409–1415 (2017). https://doi.org/10.1364/OPTICA.4.001409
Article
ADS
Google Scholar
A. Nemilentsau, T. Low, G. Hanson, Anisotropic 2D materials for tunable hyperbolic plasmonics. Phys. Rev. Lett. 116, 066804 (2016). https://doi.org/10.1103/PhysRevLett.116.066804
Article
ADS
Google Scholar
K. Kurokawa, An Introduction to the Theory of Microwave Circuits (Academic, New York, 1969)
Google Scholar
H. Dötsch, N. Bahlmann, O. Zhuromskyy, M. Hammer, L. Wilkens, R. Gerhardt, P. Hertel, A.F. Popkov, Applications of magneto-optical waveguides in integrated optics: review. J. Opt. Soc. Am. B 22, 240–253 (2005). https://doi.org/10.1364/JOSAB.22.000240
Article
ADS
Google Scholar
Y. Shoji, T. Mizumoto, Magneto-optical non-reciprocal devices in silicon photonics. Sci. Technol. Adv. Mater. 15, 014602 (2014). https://doi.org/10.1088/1468-6996/15/1/014602
Article
Google Scholar
N.V. Kravtsov, N.N. Kravtsov, Nonreciprocal effects in ring lasers. Quantum Electron. 29, 378 (1999). https://doi.org/10.1070/QE1999v029n05ABEH001495
Article
ADS
Google Scholar
E. Liu, Y. Sun, N. Kumar, L. Muechler, A. Sun, L. Jiao, S.-Y. Yang, D. Liu, A. Liang, Q. Xu, J. Kroder, V. Süß, H. Borrmann, C. Shekhar, Z. Wang, C. Xi, W. Wang, W. Schnelle, S. Wirth, Y. Chen, S.T.B. Goennenwein, C. Felser, Giant anomalous Hall effect in a ferromagnetic kagome-lattice semimetal. Nat. Phys. 14, 1125–1131 (2018). https://doi.org/10.1038/s41567-018-0234-5
Article
Google Scholar
K. Halterman, M. Alidoust, Waveguide modes in Weyl semimetals with tilted Dirac cones. Opt. Express 27(25), 36164–36182 (2019). https://doi.org/10.1364/OE.27.036164
Article
ADS
Google Scholar
A. Figotin, I. Vitebsky, Nonreciprocal magnetic photonic crystals. Phys. Rev. E 63(6), 066609 (2001). https://doi.org/10.1103/PhysRevE.63.066609
Article
ADS
MATH
Google Scholar
T. Li, C. Yin, F. Wu, Strong optical non-reciprocity in one-dimensional photonic crystal containing a Weyl semimetal-based defect. Opt. Mater. 121, 111583 (2021). https://doi.org/10.1016/j.optmat.2021.111583
Article
Google Scholar
S. Fan, J.D. Joannopoulos, Analysis of guided resonances in photonic crystal slabs. Phys. Rev. B 65, 235112 (2002). https://doi.org/10.1103/PhysRevB.65.235112
Article
ADS
Google Scholar
M. Kargarian, M. Randeria, N. Trivedi, Theory of Kerr and Faraday rotations and linear dichroism in topological Weyl semimetals. Sci. Rep. 5, 12683 (2015). https://doi.org/10.1038/srep12683
Article
ADS
Google Scholar
N.M. Chtchelkatchev, O.L. Berman, R.Y. Kezerashvili, Y.E. Lozovik, Chiral filtration of light by Weyl-semimetal medium. Phys. Lett. A 399, 127294 (2021). https://doi.org/10.1016/j.physleta.2021.127294
Article
MathSciNet
MATH
Google Scholar
C. Yang, B. Zhao, W. Cai, Z.M. Zhang, Mid-infrared broadband circular polarizer based on Weyl semimetals. Opt. Express 30(2), 3035–3046 (2022). https://doi.org/10.1364/OE.445803
Article
ADS
Google Scholar
S.P. Mukherjee, J.P. Carbotte, Absorption of circular polarized light in tilted type-I and type-II Weyl semimetals. Phys. Rev. B 96, 085114 (2017). https://doi.org/10.1103/PhysRevB.96.085114
Article
ADS
Google Scholar
V.G. Veselago, The electrodynamics of substances with simultaneously negative values of \(\epsilon\) and \(\mu\). Soviet Phys. Uspekhi 10(4), 509 (1968). https://doi.org/10.1070/PU1968v010n04ABEH003699
Article
ADS
Google Scholar
J.B. Pendry, Negative refraction makes a perfect lens. Phys. Rev. Lett. 85(18), 3966–3969 (2000). https://doi.org/10.1103/PhysRevLett.85.3966
Article
ADS
Google Scholar
R.A. Shelby, D.R. Smith, S. Schultz, Experimental verification of a negative index of refraction. Science 292(5514), 77–79 (2001). https://doi.org/10.1126/science.1058847
Article
ADS
Google Scholar
M. Notomi, Theory of light propagation in strongly modulated photonic crystals: refractionlike behavior in the vicinity of the photonic band gap. Phys. Rev. B 62, 10696–10705 (2000). https://doi.org/10.1103/PhysRevB.62.10696
Article
ADS
Google Scholar
C. Luo, S.G. Johnson, J.D. Joannopoulos, J.B. Pendry, All-angle negative refraction without negative effective index. Phys. Rev. B 65, 201104 (2002). https://doi.org/10.1103/PhysRevB.65.201104
Article
ADS
Google Scholar
E. Cubukcu, K. Aydin, E. Ozbay, S. Foteinopoulou, C.M. Soukoulis, Negative refraction by photonic crystals. Nature 423, 604–605 (2003). https://doi.org/10.1038/423604b
Article
ADS
Google Scholar
S. Tretyakov, I. Nefedov, A. Sihvola, S. Maslovski, C. Simovski, Waves and energy in chiral nihility. J. Electromagn. Waves Appl. 17(5), 695–706 (2003). https://doi.org/10.1163/156939303322226356
Article
ADS
Google Scholar
J.B. Pendry, A chiral route to negative refraction. Science 306, 1353–1355 (2004). https://doi.org/10.1126/science.1104467
Article
ADS
Google Scholar
C. Monzon, D.W. Forester, Negative refraction and focusing of circularly polarized waves in optically active media. Phys. Rev. Lett. 95, 123904 (2005). https://doi.org/10.1103/PhysRevLett.95.123904
Article
ADS
Google Scholar
S. Zhang, Y.-S. Park, J. Li, X. Lu, W. Zhang, X. Zhang, Negative refractive index in chiral metamaterials. Phys. Rev. Lett. 102, 023901 (2009). https://doi.org/10.1103/PhysRevLett.102.023901
Article
ADS
Google Scholar
M.S. Ukhtary, A.R.T. Nugraha, R. Saito, Negative refraction in Weyl semimetals. J. Phys. Soc. Jpn. 86(10), 104703 (2017). https://doi.org/10.7566/JPSJ.86.104703
Article
ADS
Google Scholar
T. Hayata, A new route to negative refractive index from topological metals. Prog. Theor. Exp. Phys. 2018, 083–101 (2018). https://doi.org/10.1093/ptep/pty082
Article
ADS
MathSciNet
MATH
Google Scholar
R.D.Y. Hills, A. Kusmartseva, F.V. Kusmartsev, Current-voltage characteristics of Weyl semimetal semiconducting devices, Veselago lenses, and hyperbolic Dirac phase. Phys. Rev. B 95, 214103 (2017). https://doi.org/10.1103/PhysRevB.95.214103
Article
ADS
Google Scholar
S. Tchoumakov, J. Cayssol, A.G. Grushin, Three-dimensional chiral Veselago lensing. Phys. Rev. B 105(7), 075309 (2022). https://doi.org/10.1103/PhysRevB.105.075309
Article
ADS
Google Scholar
G. Giuliani, G. Vignale, Quantum Theory of the Electron Liquid (Cambridge University Press, Cambridge, 2005)
Book
Google Scholar
J.E. Moore, Optical properties of Weyl semimetals. Natl. Sci. Rev. 6, 206–208 (2019). https://doi.org/10.1093/nsr/nwy164
Article
Google Scholar
R.L. Peterson, Formal theory of nonlinear response. Rev. Mod. Phys. 39, 69–77 (1967). https://doi.org/10.1103/RevModPhys.39.69
Article
ADS
MATH
Google Scholar
I. Sodemann, L. Fu, Quantum nonlinear Hall effect induced by Berry curvature dipole in time-reversal invariant materials. Phys. Rev. Lett. 115, 216806 (2015). https://doi.org/10.1103/PhysRevLett.115.216806
Article
ADS
Google Scholar
A. Cortijo, Magnetic-field-induced nonlinear optical responses in inversion symmetric Dirac semimetals. Phys. Rev. B 94, 235123 (2016). https://doi.org/10.1103/PhysRevB.94.235123
Article
ADS
Google Scholar
T. Morimoto, N. Nagaosa, Topological nature of nonlinear optical effects in solids. Sci. Adv. 2, 1501524 (2016). https://doi.org/10.1126/sciadv.1501524
Article
ADS
Google Scholar
T. Morimoto, S. Zhong, J. Orenstein, J.E. Moore, Semiclassical theory of nonlinear magneto-optical responses with applications to topological Dirac/Weyl semimetals. Phys. Rev. B 94(24), 245121 (2016). https://doi.org/10.1103/PhysRevB.94.245121
Article
ADS
Google Scholar
Q. Ma, S.-Y. Xu, C.-K. Chan, C.-L. Zhang, G. Chang, Y. Lin, W. Xie, T. Palacios, H. Lin, S. Jia, P.A. Lee, P. Jarillo-Herrero, N. Gedik, Direct optical detection of Weyl fermion chirality in a topological semimetal. Nat. Phys. 13, 842–847 (2017). https://doi.org/10.1038/nphys4146
Article
Google Scholar
F. de Juan, A.G. Grushin, T. Morimoto, J.E. Moore, Quantized circular photogalvanic effect in Weyl semimetals. Nat. Commun. 8, 15995 (2017). https://doi.org/10.1038/ncomms15995
Article
ADS
Google Scholar
C.-K. Chan, N.H. Lindner, G. Refael, P.A. Lee, Photocurrents in Weyl semimetals. Phys. Rev. B 95, 041104 (2017). https://doi.org/10.1103/PhysRevB.95.041104
Article
ADS
Google Scholar
E.J. König, H.-Y. Xie, D.A. Pesin, A. Levchenko, Photogalvanic effect in Weyl semimetals. Phys. Rev. B 96, 075123 (2017). https://doi.org/10.1103/PhysRevB.96.075123
Article
ADS
Google Scholar
L.E. Golub, E.L. Ivchenko, B.Z. Spivak, Photocurrent in gyrotropic Weyl semimetals. JETP Lett. 105(12), 782–785 (2017). https://doi.org/10.1134/S0021364017120062
Article
ADS
Google Scholar
R.W. Boyd, Nonlinear Optics, 4th edn. (Academic Press, San Diego, 2020). https://doi.org/10.1016/C2015-0-05510-1
Book
Google Scholar
B.I. Sturman, V.M. Fridkin, The Photovoltaic and Photorefractive Effects in Noncentrosymmetric Materials (Gordon and Breach Science Publishers, Philadelphia, 1992)
Google Scholar
J.E. Sipe, A.I. Shkrebtii, Second-order optical response in semiconductors. Phys. Rev. B 61(8), 5337–5352 (2000). https://doi.org/10.1103/PhysRevB.61.5337
Article
ADS
Google Scholar
H. Rostami, M. Polini, Nonlinear anomalous photocurrents in Weyl semimetals. Phys. Rev. B 97, 195151 (2018). https://doi.org/10.1103/PhysRevB.97.195151
Article
ADS
Google Scholar
W. Shockley, H.J. Queisser, Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32, 510–519 (1961). https://doi.org/10.1063/1.1736034
Article
ADS
Google Scholar
J.E. Spanier, V.M. Fridkin, A.M. Rappe, A.R. Akbashev, A. Polemi, Y. Qi, Z. Gu, S.M. Young, C.J. Hawley, D. Imbrenda, G. Xiao, A.L. Bennett-Jackson, C.L. Johnson, Power conversion efficiency exceeding the Shockley-Queisser limit in a ferroelectric insulator. Nat. Photonics 10, 611–616 (2016). https://doi.org/10.1038/nphoton.2016.143
Article
ADS
Google Scholar
G.B. Osterhoudt, L.K. Diebel, M.J. Gray, X. Yang, J. Stanco, X. Huang, B. Shen, N. Ni, P.J.W. Moll, Y. Ran, K.S. Burch, Colossal mid-infrared bulk photovoltaic effect in a type-I Weyl semimetal. Nat. Mater. 18, 471–475 (2019). https://doi.org/10.1038/s41563-019-0297-4
Article
ADS
Google Scholar
L. Zhang, Z. Chen, K. Zhang, L. Wang, H. Xu, L. Han, W. Guo, Y. Yang, C.-N. Kuo, C.S. Lue, D. Mondal, J. Fuji, I. Vobornik, B. Ghosh, A. Agarwal, H. Xing, X. Chen, A. Politano, W. Lu, High-frequency rectifiers based on type-II Dirac fermions. Nat. Commun. 12(1), 1584 (2021). https://doi.org/10.1038/s41467-021-21906-w
Article
ADS
Google Scholar
L. Wang, L. Han, W. Guo, L. Zhang, C. Yao, Z. Chen, Y. Chen, C. Guo, K. Zhang, C.-N. Kuo, C.S. Lue, A. Politano, H. Xing, M. Jiang, X. Yu, X. Chen, W. Lu, Hybrid Dirac semimetal-based photodetector with efficient low-energy photon harvesting. Light Sci. Appl. 11(1), 53 (2022). https://doi.org/10.1038/s41377-022-00741-8
Article
ADS
Google Scholar
H. Weng, Lighting up Weyl semimetals. Nat. Mater. 18, 428–429 (2019). https://doi.org/10.1038/s41563-019-0330-7
Article
ADS
Google Scholar
A.M. Glass, D. von der Linde, T.J. Negran, High-voltage bulk photovoltaic effect and the photorefractive process in LiNbO3. Appl. Phys. Lett. 25, 233–235 (1974). https://doi.org/10.1063/1.1655453
Article
ADS
Google Scholar
F. Nastos, J.E. Sipe, Optical rectification and shift currents in GaAs and GaP response: below and above the band gap. Phys. Rev. B 74, 035201 (2006). https://doi.org/10.1103/PhysRevB.74.035201
Article
ADS
Google Scholar
N. Laman, A.I. Shkrebtii, J.E. Sipe, H.M. van Driel, Quantum interference control of currents in CdSe with a single optical beam. Appl. Phys. Lett. 75, 2581–2583 (1999). https://doi.org/10.1063/1.125084
Article
ADS
Google Scholar
Y. Zhang, H. Ishizuka, J. van den Brink, C. Felser, B. Yan, N. Nagaosa, Photogalvanic effect in Weyl semimetals from first principles. Phys. Rev. B 97, 241118 (2018). https://doi.org/10.1103/PhysRevB.97.241118
Article
ADS
Google Scholar
B. Sadhukhan, T. Nag, Electronic structure and unconventional nonlinear response in double Weyl semimetal SrSi\(_2\). Phys. Rev. B 104, 245122 (2021). https://doi.org/10.1103/PhysRevB.104.245122
Article
ADS
Google Scholar
B. Sadhukhan, T. Nag, Role of time reversal symmetry and tilting in circular photogalvanic responses. Phys. Rev. B 103, 144308 (2021). https://doi.org/10.1103/PhysRevB.103.144308
Article
ADS
Google Scholar
T. Nag, D.M. Kennes, Distinct signatures of particle-hole symmetry breaking in transport coefficients for generic multi-Weyl semimetals. Phys. Rev. B 105, 214307 (2022). https://doi.org/10.1103/PhysRevB.105.214307
Article
ADS
Google Scholar
K. Sun, S.-S. Sun, L.-L. Wei, C. Guo, H.-F. Tian, G.-F. Chen, H.-X. Yang, J.-Q. Li, Circular photogalvanic effect in the Weyl semimetal TaAs. Chin. Phys. Lett. 34, 117203 (2017). https://doi.org/10.1088/0256-307X/34/11/117203
Article
ADS
Google Scholar
Z. Ji, G. Liu, Z. Addison, W. Liu, P. Yu, H. Gao, Z. Liu, A.M. Rappe, C.L. Kane, E.J. Mele, R. Agarwal, Spatially dispersive circular photogalvanic effect in a Weyl semimetal. Nat. Mater. 18, 955–962 (2019). https://doi.org/10.1038/s41563-019-0421-5
Article
ADS
Google Scholar
N.M. Gabor, J.C.W. Song, Q. Ma, N.L. Nair, T. Taychatanapat, K. Watanabe, T. Taniguchi, L.S. Levitov, P. Jarillo-Herrero, Hot carrier-assisted intrinsic photoresponse in graphene. Science 334, 648–652 (2011). https://doi.org/10.1126/science.1211384
Article
ADS
Google Scholar
J.W. McIver, D. Hsieh, H. Steinberg, P. Jarillo-Herrero, N. Gedik, Control over topological insulator photocurrents with light polarization. Nat. Nanotechnol. 7, 96–100 (2012). https://doi.org/10.1038/nnano.2011.214
Article
ADS
Google Scholar
H. Yuan, X. Wang, B. Lian, H. Zhang, X. Fang, B. Shen, G. Xu, Y. Xu, S.-C. Zhang, H.Y. Hwang, Y. Cui, Generation and electric control of spin-valley-coupled circular photogalvanic current in WSe\(_2\). Nat. Nanotechnol. 9, 851–857 (2014). https://doi.org/10.1038/nnano.2014.183
Article
ADS
Google Scholar
L.Z. Tan, F. Zheng, S.M. Young, F. Wang, S. Liu, A.M. Rappe, Shift current bulk photovoltaic effect in polar materials–hybrid and oxide perovskites and beyond. NPJ Comput. Mater. 2, 1–12 (2016). https://doi.org/10.1038/npjcompumats.2016.26
Article
Google Scholar
J. Ibañez-Azpiroz, S.S. Tsirkin, I. Souza, Ab initio calculation of the shift photocurrent by Wannier interpolation. Phys. Rev. B 97, 245143 (2018). https://doi.org/10.1103/PhysRevB.97.245143
Article
ADS
Google Scholar
J.-M. Lihm, Comment on Ab initio calculation of the shift photocurrent by Wannier interpolation. Phys. Rev. B 103, 247101 (2021). https://doi.org/10.1103/PhysRevB.103.247101. (arXiv2105.14302)
Article
ADS
Google Scholar
D. Côté, N. Laman, H.M. van Driel, Rectification and shift currents in GaAs. Appl. Phys. Lett. 80, 905–907 (2002). https://doi.org/10.1063/1.1436530
Article
ADS
Google Scholar
J. Ma, Q. Gu, Y. Liu, J. Lai, P. Yu, X. Zhuo, Z. Liu, J.-H. Chen, J. Feng, D. Sun, Nonlinear photoresponse of type-II Weyl semimetals. Nat. Mater. 18, 476–481 (2019). https://doi.org/10.1038/s41563-019-0296-5
Article
ADS
Google Scholar
R. Karplus, J.M. Luttinger, Hall effect in ferromagnetics. Phys. Rev. 95, 1154–1160 (1954). https://doi.org/10.1103/PhysRev.95.1154
Article
ADS
MATH
Google Scholar
G. Sundaram, Q. Niu, Wave-packet dynamics in slowly perturbed crystals: gradient corrections and Berry-phase effects. Phys. Rev. B 59, 14915–14925 (1999). https://doi.org/10.1103/PhysRevB.59.14915
Article
ADS
Google Scholar
Y. Zhang, Y. Sun, B. Yan, Berry curvature dipole in Weyl semimetal materials: an ab initio study. Phys. Rev. B 97, 041101 (2018). https://doi.org/10.1103/PhysRevB.97.041101
Article
ADS
Google Scholar
Y. Gao, F. Zhang, W. Zhang, Second-order nonlinear Hall effect in Weyl semimetals. Phys. Rev. B 102(24), 245116 (2020). https://doi.org/10.1103/PhysRevB.102.245116
Article
ADS
Google Scholar
G. Chang, J.-X. Yin, T. Neupert, D.S. Sanchez, I. Belopolski, S.S. Zhang, T.A. Cochran, Z. Chéng, M.-C. Hsu, S.-M. Huang, B. Lian, S.-Y. Xu, H. Lin, M.Z. Hasan, Unconventional photocurrents from surface Fermi arcs in topological chiral semimetals. Phys. Rev. Lett. 124(16), 166404 (2020). https://doi.org/10.1103/PhysRevLett.124.166404
Article
ADS
Google Scholar
J.F. Steiner, A.V. Andreev, M. Breitkreiz, Surface photogalvanic effect in Weyl semimetals. Phys. Rev. Res. 4(2), 023021 (2022). https://doi.org/10.1103/PhysRevResearch.4.023021
Article
Google Scholar
L. Allen, M.W. Beijersbergen, R.J.C. Spreeuw, J.P. Woerdman, Orbital angular momentum of light and the transformation of Laguerre-Gaussian laser modes. Phys. Rev. A 45(11), 8185–8189 (1992). https://doi.org/10.1103/PhysRevA.45.8185
Article
ADS
Google Scholar
G.F. Quinteiro, P.I. Tamborenea, Theory of the optical absorption of light carrying orbital angular momentum by semiconductors. EPL Europhys. Lett. 85, 47001 (2009). https://doi.org/10.1209/0295-5075/85/47001
Article
ADS
Google Scholar
P. Lebedew, Untersuchungen über die Druckkräfte des Lichtes. Ann. Phys. 311, 433–458 (1901). https://doi.org/10.1002/andp.19013111102
Article
Google Scholar
S. Patankar, L. Wu, B. Lu, M. Rai, J.D. Tran, T. Morimoto, D.E. Parker, A.G. Grushin, N.L. Nair, J.G. Analytis, J.E. Moore, J. Orenstein, D.H. Torchinsky, Resonance-enhanced optical nonlinearity in the Weyl semimetal TaAs. Phys. Rev. B 98(16), 165113 (2018). https://doi.org/10.1103/PhysRevB.98.165113
Article
ADS
Google Scholar
Y. Gao, S. Kaushik, E.J. Philip, Z. Li, Y. Qin, Y.P. Liu, W.L. Zhang, Y.L. Su, X. Chen, H. Weng, D.E. Kharzeev, M.K. Liu, J. Qi, Chiral terahertz wave emission from the Weyl semimetal TaAs. Nat. Commun. 11, 720 (2020). https://doi.org/10.1038/s41467-020-14463-1
Article
ADS
Google Scholar
J.P. van der Ziel, P.S. Pershan, L.D. Malmstrom, Optically-induced magnetization resulting from the inverse Faraday effect. Phys. Rev. Lett. 15(5), 190–193 (1965). https://doi.org/10.1103/PhysRevLett.15.190
Article
ADS
Google Scholar
R. Hertel, Theory of the inverse Faraday effect in metals. J. Magn. Magn. Mater. 303(1), 1–4 (2006). https://doi.org/10.1016/j.jmmm.2005.10.225
Article
ADS
Google Scholar
P.S. Pershan, Nonlinear optical properties of solids: energy considerations. Phys. Rev. 130(3), 919–929 (1963). https://doi.org/10.1103/PhysRev.130.919
Article
ADS
MathSciNet
MATH
Google Scholar
A.V. Kimel, A. Kirilyuk, P.A. Usachev, R.V. Pisarev, A.M. Balbashov, T. Rasing, Ultrafast non-thermal control of magnetization by instantaneous photomagnetic pulses. Nature 435(7042), 655–657 (2005). https://doi.org/10.1038/nature03564
Article
ADS
Google Scholar
A.V. Kimel, A. Kirilyuk, T. Rasing, Femtosecond opto-magnetism: ultrafast laser manipulation of magnetic materials. Laser Photonics Rev. 1(3), 275–287 (2007). https://doi.org/10.1002/lpor.200710022
Article
ADS
Google Scholar
A.A. Zyuzin, M. Silaev, V.A. Zyuzin, Nonlinear chiral transport in Dirac semimetals. Phys. Rev. B 98, 205149 (2018). https://doi.org/10.1103/PhysRevB.98.205149
Article
ADS
Google Scholar
Kawaguchi, M., Hirose, H., Chi, Z., Lau, Y.-C., Freimuth, F., Hayashi, M.: Giant Inverse Faraday Effect in Dirac Semimetals. arXiv (2020). arXiv2009.01388
I.D. Tokman, Q. Chen, I.A. Shereshevsky, V.I. Pozdnyakova, I. Oladyshkin, M. Tokman, A. Belyanin, Inverse Faraday effect in graphene and Weyl semimetals. Phys. Rev. B 101, 174429 (2020). https://doi.org/10.1103/PhysRevB.101.174429
Article
ADS
Google Scholar
Gao, Y., Wang, C., Xiao, D.: Topological inverse Faraday effect in Weyl semimetals. arXiv (2020). arXiv2009.13392
Cao, J., Zeng, C., Li, X.-P., Wang, M., Yang, S.A., Yu, Z.-M., Yao, Y.: Low-Frequency Divergence of Circular Photomagnetic Effect in Topological Semimetals. arXiv (2022). arXiv2201.06243
L. Liang, P.O. Sukhachov, A.V. Balatsky, Axial magnetoelectric effect in Dirac semimetals. Phys. Rev. Lett. 126, 247202 (2021). https://doi.org/10.1103/PhysRevLett.126.247202
Article
ADS
MathSciNet
Google Scholar
Y.-Y. Lv, J. Xu, S. Han, C. Zhang, Y. Han, J. Zhou, S.-H. Yao, X.-P. Liu, M.-H. Lu, H. Weng, Z. Xie, Y.B. Chen, J. Hu, Y.-F. Chen, S. Zhu, High-harmonic generation in Weyl semimetal \(\beta\)-\({\rm WP_2}\) crystals. Nat. Commun. 12(1), 6437 (2021). https://doi.org/10.1038/s41467-021-26766-y
Article
ADS
Google Scholar
S. Ghimire, A.D. DiChiara, E. Sistrunk, P. Agostini, L.F. DiMauro, D.A. Reis, Observation of high-order harmonic generation in a bulk crystal. Nat. Phys. 7, 138–141 (2011). https://doi.org/10.1038/nphys1847
Article
Google Scholar
H. Liu, Y. Li, Y.S. You, S. Ghimire, T.F. Heinz, D.A. Reis, High-harmonic generation from an atomically thin semiconductor. Nat. Phys. 13, 262–265 (2017). https://doi.org/10.1038/nphys3946
Article
Google Scholar
H. Liu, C. Guo, G. Vampa, J.L. Zhang, T. Sarmiento, M. Xiao, P.H. Bucksbaum, J. Vučković, S. Fan, D.A. Reis, Enhanced high-harmonic generation from an all-dielectric metasurface. Nat. Phys. 14, 1006–1010 (2018). https://doi.org/10.1038/s41567-018-0233-6
Article
Google Scholar
E. Goulielmakis, T. Brabec, High harmonic generation in condensed matter. Nat. Photonics 16, 411–421 (2022). https://doi.org/10.1038/s41566-022-00988-y
Article
ADS
Google Scholar
Y. Bai, F. Fei, S. Wang, N. Li, X. Li, F. Song, R. Li, Z. Xu, P. Liu, High-harmonic generation from topological surface states. Nat. Phys. 17, 311–315 (2021). https://doi.org/10.1038/s41567-020-01052-8
Article
Google Scholar
C. Heide, Y. Kobayashi, D.R. Baykusheva, D. Jain, J.A. Sobota, M. Hashimoto, P.S. Kirchmann, S. Oh, T.F. Heinz, D.A. Reis, S. Ghimire, Probing topological phase transitions using high-harmonic generation. Nat. Photonics (2022). https://doi.org/10.1038/s41566-022-01050-7
Article
Google Scholar
T.T. Luu, H.J. Wörner, Measurement of the Berry curvature of solids using high-harmonic spectroscopy. Nat. Commun. 9, 916 (2018). https://doi.org/10.1038/s41467-018-03397-4
Article
ADS
Google Scholar
A. Bharti, M.S. Mrudul, G. Dixit, High-harmonic spectroscopy of light-driven nonlinear anisotropic anomalous Hall effect in a Weyl semimetal. Phys. Rev. B 105, 155140 (2022). https://doi.org/10.1103/PhysRevB.105.155140
Article
ADS
Google Scholar
S. Zhong, J.E. Moore, I. Souza, Gyrotropic magnetic effect and the magnetic moment on the Fermi surface. Phys. Rev. Lett. 116(7), 077201 (2016). https://doi.org/10.1103/PhysRevLett.116.077201
Article
ADS
Google Scholar
C.-K. Chan, P.A. Lee, K.S. Burch, J.H. Han, Y. Ran, When chiral photons meet chiral fermions: Photoinduced anomalous Hall effects in Weyl semimetals. Phys. Rev. Lett. 116(2), 026805 (2016). https://doi.org/10.1103/PhysRevLett.116.026805
Article
ADS
Google Scholar
Nathan, F., Martin, I., Refael, G.: Topological Frequency Conversion in Weyl Semimetals. arXiv (2022). arXiv2201.07804
H. Ishizuka, T. Hayata, M. Ueda, N. Nagaosa, Emergent electromagnetic induction and adiabatic charge pumping in noncentrosymmetric Weyl semimetals. Phys. Rev. Lett. 117(21), 216601 (2016). https://doi.org/10.1103/PhysRevLett.117.216601
Article
ADS
Google Scholar
H. Ishizuka, T. Hayata, M. Ueda, N. Nagaosa, Momentum-space electromagnetic induction in Weyl semimetals. Phys. Rev. B 95(24), 245211 (2017). https://doi.org/10.1103/PhysRevB.95.245211
Article
ADS
Google Scholar
K. Halterman, M. Alidoust, A. Zyuzin, Epsilon-near-zero response and tunable perfect absorption in Weyl semimetals. Phys. Rev. B 98(8), 085109 (2018). https://doi.org/10.1103/PhysRevB.98.085109
Article
ADS
Google Scholar
C. Zhao, C. Zhao, G. Hu, Y. Chen, Q. Zhang, Y. Zhang, Y. Zhang, C.-W. Qiu, C.-W. Qiu, Unidirectional bound states in the continuum in Weyl semimetal nanostructures. Photonics Res. 10(8), 1828–1838 (2022). https://doi.org/10.1364/PRJ.459383
Article
Google Scholar
M.Q. Liu, C.Y. Zhao, H. Bao, Transverse Kerker scattering governed by two nondegenerate electric dipoles and its application in arbitrary beam steering. J. Quant. Spectrosc. Radiat. Transfer 262, 107514 (2021). https://doi.org/10.1016/j.jqsrt.2021.107514
Article
Google Scholar
G. Oktay, M. Sarısaman, M. Tas, Lasing with topological Weyl semimetal. Sci. Rep. 10, 3127 (2020). https://doi.org/10.1038/s41598-020-59423-3
Article
ADS
Google Scholar
G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons (Oxford University Press, Oxford, 2005)
Google Scholar
Z.M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007)
MATH
Google Scholar
T.L. Bergman, T.L. Bergman, F.P. Incropera, D.P. Dewitt, A.S. Lavine, Fundamentals of Heat and Mass Transfer (Wiley, Hoboken, 2011)
Google Scholar
M.F. Modest, S. Mazumder, Radiative Heat Transfer (Academic Press, London, 2021)
Google Scholar
J.R. Howell, M.P. Mengüç, K. Daun, R. Siegel, Thermal Radiation Heat Transfer (CRC Press, London, 2020)
Book
Google Scholar
W.C. Snyder, Z. Wan, X. Li, Thermodynamic constraints on reflectance reciprocity and Kirchhoff’s law. Appl. Opt. 37, 3464–3470 (1998). https://doi.org/10.1364/AO.37.003464
Article
ADS
Google Scholar
B. Zhao, Y. Shi, J. Wang, Z. Zhao, N. Zhao, S. Fan, Near-complete violation of Kirchhoff’s law of thermal radiation with a 0.3 T magnetic field. Opt. Lett. 44, 4203–4206 (2019). https://doi.org/10.1364/OL.44.004203
Article
ADS
Google Scholar
L. Onsager, Reciprocal relations in irreversible processes. I. Phys. Rev. 37(4), 405–426 (1931). https://doi.org/10.1103/PhysRev.37.405
Article
ADS
MATH
Google Scholar
L. Onsager, Reciprocal relations in irreversible processes. II. Phys. Rev. 38(12), 2265–2279 (1931). https://doi.org/10.1103/PhysRev.38.2265
Article
ADS
MATH
Google Scholar
O. Madelung, Semiconductors: Data Handbook (Springer, Berlin, 2004)
Book
Google Scholar
D.B. Tanner, Optical Effects in Solids (Cambridge University Press, Cambridge, 2019)
Book
Google Scholar
L. Zhu, S. Fan, Near-complete violation of detailed balance in thermal radiation. Phys. Rev. B 90, 220301 (2014). https://doi.org/10.1103/PhysRevB.90.220301
Article
ADS
Google Scholar
J.M.D. Coey, Magnetism and Magnetic Materials (Cambridge University Press, Cambridge, 2010)
Google Scholar
W. Feng, X. Fu, C. Wan, Z. Yuan, X. Han, N.V. Quang, S. Cho, Spin gapless semiconductor like Ti\(_2\)MnAl film as a new candidate for spintronics application. Phys. Status solidi (RRL) Rapid Res. Lett. 9, 641–645 (2015). https://doi.org/10.1002/pssr.201510340
Article
ADS
Google Scholar
W. Shi, L. Muechler, K. Manna, Y. Zhang, K. Koepernik, R. Car, J. van den Brink, C. Felser, Y. Sun, Prediction of a magnetic Weyl semimetal without spin-orbit coupling and strong anomalous Hall effect in the Heusler compensated ferrimagnet Ti\(_2\)MnAl. Phys. Rev. B 97, 060406 (2018). https://doi.org/10.1103/PhysRevB.97.060406
Article
ADS
Google Scholar
J. Wu, Z. Wang, H. Zhai, Z. Shi, X. Wu, X. Wu, F. Wu, F. Wu, Near-complete violation of Kirchhoff’s law of thermal radiation in ultrathin magnetic Weyl semimetal films. Opt. Mater. Express 11, 4058–4066 (2021). https://doi.org/10.1364/OME.444308
Article
ADS
Google Scholar
X. Wu, H. Yu, F. Wu, B. Wu, Enhanced nonreciprocal radiation in Weyl semimetals by attenuated total reflection. AIP Adv. 11, 075106 (2021). https://doi.org/10.1063/5.0055418
Article
ADS
Google Scholar
J. Wu, B. Wu, Z. Wang, X. Wu, Strong nonreciprocal thermal radiation in Weyl semimetal-dielectric multilayer structure. Int. J. Therm. Sci. 181, 107788 (2022). https://doi.org/10.1016/j.ijthermalsci.2022.107788
Article
Google Scholar
B. Zhao, J. Wang, Z. Zhao, C. Guo, Z. Yu, S. Fan, Nonreciprocal thermal emitters using metasurfaces with multiple diffraction channels. Phys. Rev. Appl. 16, 064001 (2021). https://doi.org/10.1103/PhysRevApplied.16.064001
Article
ADS
Google Scholar
M.F. Maghrebi, A.V. Gorshkov, J.D. Sau, Fluctuation-induced torque on a topological insulator out of thermal equilibrium. Phys. Rev. Lett. 123, 055901 (2019). https://doi.org/10.1103/PhysRevLett.123.055901
Article
ADS
MathSciNet
Google Scholar
E. Khan, E.E. Narimanov, Spinning radiation from a topological insulator. Phys. Rev. B 100, 081408 (2019). https://doi.org/10.1103/PhysRevB.100.081408
Article
ADS
Google Scholar
Y. Wang, C. Khandekar, X. Gao, T. Li, D. Jiao, Z. Jacob, Broadband circularly polarized thermal radiation from magnetic Weyl semimetals. Opt. Mater. Express 11(11), 3880–3895 (2021). https://doi.org/10.1364/OME.437838
Article
ADS
Google Scholar
C. Khandekar, F. Khosravi, Z. Li, Z. Jacob, New spin-resolved thermal radiation laws for nonreciprocal bianisotropic media. New J. Phys. 22(12), 123005 (2020). https://doi.org/10.1088/1367-2630/abc988
Article
ADS
MathSciNet
Google Scholar
A. Ott, P. Ben-Abdallah, S.-A. Biehs, Circular heat and momentum flux radiated by magneto-optical nanoparticles. Phys. Rev. B 97, 205414 (2018). https://doi.org/10.1103/PhysRevB.97.205414
Article
ADS
Google Scholar
Y. Guo, S. Fan, Single gyrotropic particle as a heat engine. ACS Photonics 8, 1623–1629 (2021). https://doi.org/10.1021/acsphotonics.0c01920
Article
Google Scholar
S. Fan, Thermal photonics and energy applications. Joule 1, 264–273 (2017). https://doi.org/10.1016/j.joule.2017.07.012
Article
Google Scholar
L. Zhu, S. Fan, Persistent directional current at equilibrium in nonreciprocal many-body near field electromagnetic heat transfer. Phys. Rev. Lett. 117, 134303 (2016). https://doi.org/10.1103/PhysRevLett.117.134303