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Abstract 

Phase imaging is widely used in biomedical imaging, sensing, and material characterization, among other fields. 
However, direct imaging of phase objects with subwavelength resolution remains a challenge. Here, we demonstrate 
subwavelength imaging of phase and amplitude objects based on all-optical diffractive encoding and decoding. 
To resolve subwavelength features of an object, the diffractive imager uses a thin, high-index solid-immersion layer 
to transmit high-frequency information of the object to a spatially-optimized diffractive encoder, which converts/
encodes high-frequency information of the input into low-frequency spatial modes for transmission through air. 
The subsequent diffractive decoder layers (in air) are jointly designed with the encoder using deep-learning-based 
optimization, and communicate with the encoder layer to create magnified images of input objects at its output, 
revealing subwavelength features that would otherwise be washed away due to diffraction limit. We demonstrate 
that this all-optical collaboration between a diffractive solid-immersion encoder and the following decoder layers 
in air can resolve subwavelength phase and amplitude features of input objects in a highly compact design. To 
experimentally demonstrate its proof-of-concept, we used terahertz radiation and developed a fabrication method 
for creating monolithic multi-layer diffractive processors. Through these monolithically fabricated diffractive 
encoder-decoder pairs, we demonstrated phase-to-intensity (P → I) transformations and all-optically reconstructed 
subwavelength phase features of input objects (with linewidths of ~ λ/3.4, where λ is the illumination wavelength) 
by directly transforming them into magnified intensity features at the output. This solid-immersion-based diffractive 
imager, with its compact and cost-effective design, can find wide-ranging applications in bioimaging, endoscopy, 
sensing and materials characterization.
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1 Introduction
The ability to extract the phase information from an 
input optical wavefront with high spatial resolution is 
critical for various applications ranging from holographic 
displays [1] to bioimaging [2–5] and materials 
characterization [6]. Phase imaging of weakly scattering 
objects such as cells and tissue, for example, plays a key 
role in fundamental studies of biological systems [7] as 
well as medical applications, including disease diagnosis 
[4, 8]. Motivated by these applications, various phase 
imaging methods, such as phase contrast imaging [9] and 
differential interference contrast (DIC) microscopy [10], 
have been developed. Phase imaging techniques through 
scattering media have also been demonstrated by 
solving the inverse-scattering problem via transmission-
matrix-based approaches [11–14]. However, the digital 
reconstruction algorithms behind these phase imaging 
techniques are, in general, computationally expensive 
and take relatively long, even with graphics processing 
unit-accelerated computing [11]. In addition, these 
methods typically cannot capture quantitative phase 
information of specimens [15]. To address this limitation, 
quantitative phase imaging (QPI) techniques have been 
developed to provide accurate phase information based 
on a variety of phase-retrieval techniques, including, 
e.g., digital holography [16–21] and iterative multi-
frame reconstruction methods such as ptychography 
[22, 23]. These techniques, however, need intensive 
post-processing using a computer, which makes the 
imaging process time-consuming. Moreover, resolving 
subwavelength phase features is, in general, a challenge 
for these approaches due to the limited numerical 
aperture (NA) of such interferometric systems.

To improve the NA of an imaging system, the solid-
immersion principle [24–27] can be used to achieve 
single-shot imaging with subwavelength resolution 
by placing a high-index material between the object/
specimen and the objective lens [28–30]. However, 
despite their advanced set-up, solid-immersion 
microscopy systems have not yet realized subwavelength 
phase imaging. Oil/water immersion-based microscopy 
systems [31–33] that use high-index liquids around the 
object/specimen were also demonstrated. However, 
these techniques either exhibit limited phase-imaging 
resolution despite using structured illumination [34, 35] 
or require off-axis illumination with relatively intensive 
digital post-processing using a computer, which makes 
the imaging process time-consuming [36].

Here, we report a compact, solid-immersion imaging 
framework to achieve subwavelength resolution using 
all-optical diffractive processors that can realize phase-
to-intensity ( P → I ) and intensity-to-intensity ( I → I ) 
transformations at the subwavelength scale. The encoder 

layer of this optical processor is designed to transform/
encode the high-frequency information received from 
the object via a high-index medium (refractive index 
n > 1) into lower frequency spatial modes that propagate 
in air. The subsequent diffractive decoder, which is jointly 
trained with the encoder surface, processes the encoded 
spatial information through the air to synthesize at its 
output plane a magnified image of the input object, 
revealing subwavelength features that would normally be 
washed out due to the limited NA in air. When blindly 
tested with various objects, including subwavelength 
phase and amplitude structures, this encoder-decoder 
pair successfully resolved spatial features with a linewidth 
of ~ λ/2n, which could not be achieved without the solid-
immersion frequency encoder. Notably, the trained 
subwavelength diffractive imager generalized not only 
to previously unseen objects from the same distribution 
as the objects used in training (internal generalization), 
but also to new types of objects from completely 
different datasets, demonstrating external generalization 
capability.

To experimentally demonstrate the feasibility of 
this subwavelength diffractive imaging platform, we 
fabricated a multi-layer monolithic design that operates 
at the terahertz part of the spectrum. We tested this 
monolithic diffractive encoder-decoder pair with a 
customized high-resolution terahertz imaging system 
using a microprobe-based time-domain spectroscopy 
(TDS) system. Our experimental results confirmed 
that this 3D-fabricated solid-immersion diffractive 
imager can resolve phase objects (directly performing 
P → I transformations through the diffractive encoder-
decoder pair), revealing subwavelength phase features 
corresponding to linewidths of ~ λ/3.4 that would 
normally be lost due to the limited NA in air.

There are several important aspects of this work: 
the presented solid-immersion diffractive imager 
has a very compact design that axially spans less 
than 100λ; this compact design demonstrates P → I 
transformations, performing direct (all-optical) 
quantitative phase retrieval at the subwavelength scale 
through the encoding of higher spatial frequencies that 
travel in a high index dielectric medium. Furthermore, 
these solid-immersion diffractive processor-based 
subwavelength imagers can operate at different parts 
of the electromagnetic spectrum by physically scaling 
(i.e., expanding or shrinking) the optimized diffractive 
features of the encoder/decoder surfaces in proportion 
to the illumination wavelength, λ, and this is achieved 
without the need for redesigning the diffractive features. 
We believe that solid-immersion diffractive optical 
processors, with their subwavelength imaging and high 
spatial frequency processing capabilities, would provide 
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highly compact and cost-effective solutions for various 
applications in, e.g., bioimaging, sensing, and material 
inspection, among many others.

2  Results and discussion
2.1  Subwavelength imaging using solid‑immersion 

diffractive optical processors
We first established a numerical model of our solid-
immersion subwavelength imager as a diffractive network 
[37] that is designed via a deep-learning-based training 
process. Figure 1 shows the operational principles and the 
building blocks of our diffractive subwavelength imager 
based on the solid-immersion principle. As depicted in 
Fig.  1a, the input object with subwavelength features is 
placed on a high-index dielectric slab positioned in front 
of the diffractive encoder surface. The function of this 
diffractive optical encoder is to transform/encode the 
high-frequency information (f > 1/λ) of the object into 
low-frequency representations (f ≤ 1/λ) that can trans-
mit in air, where f  represents the spatial frequencies that 
make up the object information, as depicted in Fig.  1b. 
These encoded optical fields propagate in air and are sub-
sequently processed by a series of all-optical diffractive 
decoders positioned in air to recover the subwavelength 
features of the input object with a magnification factor 
of M (at the output plane). During the design process 
of this diffractive solid-immersion imager, these decoder 
diffractive layers that pass information through the air 
were jointly trained with the solid-immersion encoder 
layer, enabling the system to learn an effective encoding–
decoding transformation to defeat the bottleneck of the 
diffraction limit in air. For optimal imaging performance, 

the axial distance in air between the diffractive encoder 
and the first decoder layer and between any two consecu-
tive decoder layers were empirically set to ~ 12λ; the axial 
distance between the last diffractive layer and the output 
plane was empirically set to ~ 16λ. Each encoder/decoder 
layer has 120 × 120 diffractive neurons/features, each 
with a lateral size of ~ 0.53λ and a trainable transmission 
phase coefficient covering 0-2π (Fig. 2a). This feature size 
was selected to match the diffraction-limited lateral reso-
lution in free-space (~ λ/2) as our imaging system utilizes 
only the propagating/traveling electromagnetic waves 
while ignoring the evanescent fields due to the large 
propagation distances ( ≥ λ) [37]. The diffractive encoder 
and decoder layers were jointly optimized using a deep-
learning-based training process using datasets composed 
of custom-designed gratings and EMNIST digits/letters 
(see the Sect. 3 for details). The two separate designs of 
the optimized phase structures of the encoder-decoder 
layers for the I → I and P → I imaging tasks are pre-
sented in Fig.  2b. For both designs, the axial thickness 
of the high-index (n = 1.72) immersion material between 
the object and the all-optical encoder was set to be 1λ 
(Fig. 2a).

After the training process, we first numerically 
demonstrated the performance of the solid-immersion-
based encoder-decoder pair for subwavelength imaging 
of various input test objects, including e.g., gratings and 
EMNIST letters that were never seen before during the 
training process. Figure 2c demonstrates the performance 
(blind testing results) of two diffractive processors, 
each with 5 phase-only decoder layers, trained to image 
amplitude and phase objects with a magnification factor 

Fig. 1 Subwavelength imaging using a solid-immersion diffractive optical processor. a Scheme showing the design of the subwavelength imager 
consisting of a diffractive solid-immersion encoder and successive decoder layers that axially span < 100λ between the sample and the output 
image plane. b Frequency-domain diagram illustrating the transformation of high frequency information (f > 1/λ, which can only propagate 
in a high-index medium, n > 1) towards lower frequency points (f ≤ 1/λ, which can propagate in air). The high-index solid-immersion medium (n > 1) 
in a is between the object and the diffractive encoder. The diffractive decoder reconstructs an output image, magnified compared to the original 
image by a factor of M
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of M = 3, through I → I and P → I transformations, 
respectively. Furthermore, we quantitatively evaluated 
the performance of these solid-immersion diffractive 
optical processors by comparing their output images with 
the ground truth by calculating the mean squared error 
(MSE) and the structural similarity index measure (SSIM) 
used as image quality metrics. Through these metrics, in 
Fig.  2c, we report the overall imaging performance for 
both I → I and P → I tasks using resolution test targets 
(with various linewidths) that were not used during 
the training. Limited by the input numerical aperture 

(NA = n = 1.72), the imaging performance for both 
the amplitude and phase objects decreased when the 
linewidths of the test objects were reduced to less than 
λ/2n, indicated with the vertical dashed lines in Fig. 2c. 
Interestingly, the P → I solid-immersion diffractive 
imager provided slightly better output MSE and SSIM 
values compared to the I → I diffractive imager, high-
lighting the capabilities of the diffractive network on 
phase imaging; this P → I diffractive imager directly 
transforms subwavelength phase structures of the input 

Fig. 2 Design and performance analysis of solid-immersion diffractive optical processors for intensity- and phase-encoded input objects. a 
Scheme depicting a diffractive imager with a magnification factor of M = 3 using L = 5 diffractive decoder layers. b Phase profiles of the diffractive 
encoder and decoder layers optimized via a deep-learning training process for (upper) intensity- and (lower) phase-encoded objects, respectively. 
c Performance analysis of solid-immersion diffractive optical imagers for intensity- and phase-encoded resolution test targets with different 
linewidths ranging from ~ 0.253λ to ~ 0.333λ using mean squared error (MSE) and structural similarity index measure (SSIM). The results in c are 
also compared to baseline designs, where the decoder layers were trained without an encoder (also see Supplementary Fig. S1)
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objects into output intensity patterns, performing a form 
of all-optical phase retrieval at the subwavelength level.

To verify the essential role of the diffractive solid-
immersion encoder surface in these subwavelength 
imaging results, we also compared the performances 
of the presented encoder-decoder systems against 
decoder-only diffractive imagers, i.e., without the 
solid-immersion encoder (see Fig.  2c, dashed lines). 
To make this comparison fair, the arrangement of the 
diffractive decoder layers in air is kept the same (see 
Supplementary Fig. S1 for details). The dashed lines in 
Fig.  2c that quantify the performance of the diffractive 
imagers optimized without the encoder layer reveal a 
significant sacrifice in the output imaging performance 
of the system, clearly emphasizing the importance of 
the solid-immersion encoder layer for subwavelength 
imaging. To further elucidate the mechanism of the 
diffractive encoder surface, we also visualized the 
distribution of the spatial frequencies before and after 
the diffractive encoding process, which clearly indicate 
the increased density of the modulated spatial modes 
within the free-space cut-off frequency (f ≤ 1/λ), enabling 
effective transmission of spatial information in air (see 
Supplementary Fig. S2). This frequency-mixing process 
is conceptually similar to what is used in structured 
illumination microscopy methods [38, 39], but with 
two key differences: (1) our diffractive encoding process 
simultaneously implements a deep learning-optimized 
modulation through a broad range of 2D frequencies 
instead of a single mode; and (2) an all-optical analog 
decoder that is jointly optimized with the encoder 
surface is used instead of a digital image reconstruction 
algorithm, all-optically synthesizing the higher resolution 
image at the output plane through the constructive and 
destructive interferences of the propagating modes 
through the decoder layers in air.

We also performed an additional test to confirm the 
critical role of the subsequent decoder layers in our 
diffractive imager designs by comparing the performance 
of a solid-immersion encoder layer that is trained 
without any decoder (see Supplementary Fig. S3a, b). 
This comparison clearly revealed that a deep learning-
optimized encoder layer alone, despite the presence of 
the same solid-immersion layer with n = 1.72, failed to 
perform subwavelength imaging, once again confirming 
the essential role of the optimized collaboration 
between the diffractive encoder and decoder layers (see 
Supplementary Fig. S3ab).

As another comparative analysis, we designed a 
hybrid subwavelength imager consisting of a diffractive 
encoder surface that is jointly trained with an electronic 
decoder based on a deep convolutional neural network 
(CNN) [40]. Despite using > 50,000 training objects, the 

reconstructions performed by the CNN-based digital 
decoder exhibit signs of distortions and aberrations in 
the line shapes of the digitally reconstructed test objects, 
which is inferior in its imaging performance compared 
to our all-optical decoder layers (see Supplementary 
Fig. S3c). These aberrations/artifacts observed in the 
reconstructed images by the CNN-based digital decoder 
might be due to overfitting, and could be potentially 
improved by training it using larger datasets. If even 
this could be achieved with more diverse training of 
the digital decoder CNN, an all-optical diffractive 
decoder has several major advantages, including almost 
instantaneous image reconstruction and inference 
with low power consumption since the entire decoding 
process occurs through passive light-matter interactions 
within a thin diffractive volume; these advantages of 
an all-optical decoder are especially critical for high-
throughput imaging applications.

Figure 3a reports some additional examples of the blind 
testing results of our solid-immersion diffractive imager 
design, performing P → I transformations using new 
resolution test targets and EMNIST handwritten digits/
letters that were not used in the training process. The line 
patterns of the original phase images were resolved up to 
a linewidth ~ 0.25λ although the contrast of the output 
image decreased as the linewidth decreased below λ/3.4 
(Fig. 3a). We also verified that the same solid-immersion 
diffractive imager design can successfully reconstruct 
new letters and digits from the EMNIST test dataset 
(see Fig.  3b). We obtained similar subwavelength imag-
ing results for intensity-encoded input objects by the 
diffractive encoder-decoder design shown in the upper 
panel of Fig. 2b which was trained for I → I imaging task 
(see Supplementary Fig. S4). We should also note that, 
although the reported diffractive imagers were designed 
for P → I or I → I imaging tasks, diffractive imaging of 
complex fields (including subwavelength features of both 
amplitude and phase distributions) can also be achieved 
by combining this diffractive encoding/decoding method 
with spatial and/or wavelength multiplexing strategies 
[41], enabling the simultaneous reconstruction of both 
intensity and phase information at the subwavelength 
scale, which is left as future work.

To demonstrate the external generalization capa-
bility of our solid-immersion diffractive imagers, 
we further numerically tested the trained diffractive 
encoder-decoder system with additional datasets such 
as the Fashion-MNIST [42] and QuickDraw [43] in per-
forming P → I imaging tasks with new types of objects 
(see Fig.  4). Our analyses revealed that, despite the 
slightly larger background noise and blurring of some of 
the finer features, the contours of the Fashion-MNIST 
images were well reconstructed by our all-optical decoder 
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Fig. 3 Internal generalization of the solid-immersion diffractive imager to unknown phase-encoded objects ( P → I transformations). (a) Imaging 
results using (a) resolution-test targets with linewidths ranging from ~ 0.253λ to ~ 0.293λ and (b) EMNIST handwritten letters/digits. The diffractive 
processor consists of 1 encoder layer and L = 5 decoder layers, all jointly optimized (see Fig. 2)
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Fig. 4 External generalization of the solid-immersion diffractive imager to new types of objects from unknown image datasets for P → I 
transformations. Blind testing results using (a) Fashion-MNIST and (b) Quick-Draw image datasets. The diffractive processor consists of 1 encoder 
layer and L = 5 decoder layers, all jointly optimized (see Fig. 2). The diffractive model was trained with various gratings and EMNIST images
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as shown in Fig. 4a. The reconstructed images from the 
QuickDraw test dataset also correctly revealed various 
subwavelength features of the input objects (see Fig. 4b). 
These blind-testing results demonstrated the external 
generalization of our diffractive solid-immersion imag-
ers, highlighting their capabilities for general purpose 
subwavelength imaging. We also validated that our dif-
fractive solid-immersion designs showed the same exter-
nal generalization capability for I → I imaging tasks, 
covering new types of intensity-encoded objects never 
seen before, as illustrated in Supplementary Fig. S5.

These analyses reveal that within the input field-of-
view defined by the input aperture of the solid-immersion 
diffractive processor, we can faithfully recover various 
subwavelength features of the input objects at different 
locations and orientations as long as they remain in the 
imaging field-of-view. We should also emphasize that, 
different from near-field imaging systems [44–46], our 
diffractive imager does not process evanescent waves 
due to the long axial propagation lengths (≥ λ). However, 
this also means that our subwavelength imager designs 
do not suffer from some of the restrictions of near-field 
systems as we do not need to precisely position the 
encoder surface in the near-field of a sample. Also, the 
ability to perform single-shot sub-wavelength phase 
imaging without processing by digital algorithms is a 
unique advantage of our diffractive encoding/decoding 
approach.

2.2  Impact of the object‑to‑encoder distance (d1) 
and the distance between diffractive layers

The encoder surface plays a key role in our solid-
immersion diffractive imager designs by transforming 
the high-frequency information of the object within the 
high-index dielectric material to low-frequency modes 
that can propagate in air. Since the encoder surface 
converts the propagating modes within the dielectric 
material into propagating modes in air (to be processed 
by the successive diffractive decoder layers for all-optical 
image reconstruction), we expect that its utility and 
function should be, by and large, independent of the 
axial distance between the object and encoder surface, as 
well as the axial distance between the diffractive layers/
surfaces. To confirm this hypothesis, we studied the 
imaging performance of the diffractive solid-immersion 
imager with a range of object-to-encoder distances 
(d1) (determined by the axial thickness of the dielectric 
material; see Supplementary Fig. S6) as well as the 
axial distance (d) between the diffractive layers (see 
Supplementary Fig. S7). Firstly, we trained a series of 
diffractive imagers with d1 = 1 − 16λ and evaluated their 
imaging performance with various resolution test targets 
(see Supplementary Fig. S6a). As expected, the SSIM 

values calculated for the reconstructions of the resolution 
test targets with various linewidths covering w = 0.253–
0.333λ showed no strong dependence on d1 since the 
optimized encoder surface transforms the traveling 
waves within the dielectric solid-immersion material (see 
Supplementary Fig. S6b). However, one can observe a 
slight improvement in the output image quality for all the 
resolution test targets as d1 is increased from 1λ to ~ 8λ. 
The main reason for this slight improvement is the better 
utilization and optimization of the diffractive features 
and the degrees of freedom at the encoder surface: 
for a very small d1, the object plane communicates 
inefficiently with the optimizable diffractive features 
located at the edges of the encoder surface, which 
effectively reduces the trainable degrees of freedom 
at the encoder (see Supplementary Fig. S6c). Further 
increase of d1 to ~ 16λ caused a relative degradation of 
the output image quality since the NA of the encoder 
accordingly decreased. We also trained a separate set of 
diffractive imagers with a fixed d1 but a range of axial 
distances between the diffractive  decoder layers (i.e., 
d = 4–24λ, see Supplementary Fig. S7a). As desired, 
the SSIM values calculated for the reconstructions of 
resolution test targets with various linewidths covering 
w = 0.267–0.333λ showed no strong dependence on d 
(see Supplementary Fig. S7b).

2.3  Impact of the number (L) of diffractive decoder layers
Previous theoretical analysis and empirical studies 
showed that deeper diffractive processors can perform 
an arbitrarily selected complex-valued linear transforma-
tion more accurately and exhibit improved generaliza-
tion capability for various all-optical statistical inference 
tasks [47, 48]. To shed more light on this depth feature 
of a diffractive optical processor, here we analyze the 
impact of the number (L) of trainable decoder layers of a 
solid-immersion diffractive imager on its subwavelength 
imaging performance. Figure 5 presents our quantitative 
performance analysis for the imaging output of solid-
immersion diffractive imagers composed of different 
numbers of decoder layers (L = 1–6) optimized for per-
forming P → I imaging tasks; all the rest of the design 
features were kept the same as before. Figure  5b shows 
the SSIM values calculated for the output images recon-
structed from phase-only resolution test targets with 
linewidths of w = 0.253–0.333λ using L = 1–6 decoder 
layers. These results reveal the depth advantages of the 
diffractive decoder system, providing better resolution 
and image quality with a larger number of diffractive 
layers; for example, the sub-wavelength imaging per-
formance of the encoder-decoder pair decreased dra-
matically when L < 3, indicating the importance of the 
diffractive network’s depth for the all-optical decoding 
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Fig. 5 Resolution tests for solid-immersion diffractive imagers designed with different numbers of decoder layers. a Scheme depicting the general 
design of the diffractive subwavelength imager network with an arbitrary number (L) of diffractive decoder layers. b Quantitative analysis and (c) 
output images showing the all-optical reconstructions for resolution test targets achieved by diffractive imagers with L = 1 − 5 decoder layers
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of subwavelength information. Figure 5c further reports 
sample resolution test target images that were all-opti-
cally reconstructed by the diffractive decoders composed 
of different numbers of layers. As shown in Fig.  5c, the 
single-layer decoder (L = 1) achieved poor image recon-
struction quality where the phase features were barely 
recovered for the smaller linewidths (w =  ~ 0.253–
0.333λ). This single-layer decoder was able to partially 
reconstruct the features of the resolution targets with 
linewidths between 0.273–0.293λ, but completely failed 
to image gratings that are easier to reconstruct (e.g., 
w =  ~ 0.333λ). This relatively poor imaging performance 
of a single-layer decoder is due to the insufficient degrees 
of freedom that it has, and therefore, it could not effec-
tively learn the imaging process to generalize to test tar-
gets with various spatial frequencies. With the addition 
of a second decoder layer (L = 2), the sub-wavelength 
imaging quality improved significantly, but still it showed 
degradation in the image contrast for finer features, 
corresponding to linewidths of e.g., w =  ~ 0.267λ. The 
reconstruction quality continued to improve with the 
increasing number of decoder diffractive layers (L > 2), as 
summarized in Fig. 5b. We should also note that minor 
coherence artifacts (such as the spots in Fig. 5c for L = 1, 
2) are observed, caused by the interference of the dif-
fracted fields within the decoder volume. These artifacts 
only cover a small fraction of the pixels of the recon-
structed output image field of view (FOV), and therefore, 
their random appearance caused a negligible increase in 
the loss functions that we employed in our deep learning-
based training process. If necessary, these unwanted fea-
tures could be specifically suppressed in their intensity or 
pushed/moved outside of the imaging FOV by selectively 
penalizing these features in the training loss function.

We also tested the generalization capability of these 
solid-immersion diffractive imagers that were optimized 
with different L using new test images from internal 
datasets (EMNIST) and external datasets (Fashion-
MNIST and QuickDraw). For high-quality reconstruction 
of phase objects that were sampled from these datasets, 
L > 2 decoder layers were required (see Supplementary 
Fig. S8), similar to our earlier results reported in Fig. 5c, 
once again highlighting the importance of architectural 
depth for ensuring the generalization capability of solid-
immersion diffractive optical imagers.

2.4  Solid‑immersion diffractive imager designs 
with different magnification factors (M)

To demonstrate the versatility of the presented solid-
immersion diffractive imager, we also performed a 
quantitative evaluation of the output imaging quality 
for P → I diffractive imager designs that cover different 
magnification factors, M = 1.2–5; we used the same 

architectural design with 1 diffractive encoder layer and 
L = 5 diffractive decoder layers, collectively performing 
P → I imaging tasks (see Supplementary Fig. S9a). As 
depicted in Supplementary Fig. S9b, c, the SSIM values 
of the outputs were lower at M = 1.2 since the targeted 
output images had relatively smaller linewidths for a 
smaller M value of 1.2, which could not be effectively 
resolved in air. As expected, the output SSIM values 
evaluated for all the resolution test targets improved 
as the magnification factor M increased from 1.2 to 2 
since the feature sizes of the output/magnified images 
increased above the diffraction limit in air ~ λ/2. 
However, a further increase of the magnification factor to 
M = 5 caused a gradual decrease in output SSIM values 
for all the resolution test targets with w =  ~ 0.253–0.333λ 
linewidths; this performance degradation is mainly due 
to the significant area increase at the output field-of-
view for M = 5, which caused aberrations because of 
the spatially-varying effective numerical aperture of the 
output image plane (see Supplementary Fig. S9c). We also 
performed a numerical study of the imaging performance 
at different magnification factors, M = 1–5, for resolution 
test targets with w =  ~ 0.4–0.53λ. As summarized in 
Supplementary Fig. S10, output image SSIM values 
of > 0.9 were realized for M = 1.0, with a slight decrease in 
performance as M increased.

Despite some limitations in performance, these 
analyses confirm that our solid-immersion diffractive 
processors could successfully resolve linewidths of ~ λ/3.4 
for magnification factors of M =  ~ 1.7–5, demonstrating 
the versatility of our diffractive encoder-decoder 
designs in reconstructing output images with different 
magnification factors.

2.5  Trade‑off between output diffraction efficiency (η) 
and imaging performance

Another critical metric to evaluate for a solid-immer-
sion diffractive imager is the output power efficiency η, 
defined as the ratio of the total power distributed at the 
detector pixels divided by the total input power. Our 
forward propagation model assumes that the diffractive 
encoder/decoder layers are composed of transmissive 
dielectric materials with negligible optical absorption, 
which is a fair approximation considering the small axial 
thickness of our designs (also see Sect. 2.8). The diffrac-
tion efficiency of our solid-immersion imager designs 
can be optimized and accordingly enhanced by adding a 
diffractive efficiency-related loss term during the train-
ing stage (see the Sect.  3 for details). This additional 
loss term that is in favor of improved diffraction effi-
ciency, however, creates an imaging performance trade-
off. Figure  6a summarizes the SSIM values calculated 
for P → I image reconstructions of various resolution 
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test targets performed by solid-immersion diffractive 
imagers, composed of 1 encoder and L = 5 decoder lay-
ers, jointly trained to achieve different output diffraction 
efficiencies, covering η = 1.9−20.3%. Notably, the aver-
age diffraction efficiency of the encoder-decoder system 
was increased by more than fivefold (from η = 1.9% to 
η = 10.5%) with a negligible compromise in imaging res-
olution and contrast, highlighting the capability of our 
solid-immersion diffractive imager in achieving power-
efficient sub-wavelength imaging. Figure  6b further 
shows the output images of various resolution test tar-
gets, which confirm the decent sub-wavelength imaging 
performance of the diffractive design with η = 10.5%. As 
reported in the last column of Fig. 6b, a further increase 
in the diffraction efficiency to η > 20% caused degradation 
in the imaging quality.

2.6  Impact of solid‑immersion refractive index (n) 
on the imaging resolution

To investigate the impact of the refractive index of the 
dielectric material between the object and the encoder 
surface, we performed additional numerical testing of 
phase-encoded resolution test targets with a large range 
of n = 1.1–3.0; the architecture of the solid-immersion 
diffractive imager remained the same, consisting of 
1 encoder and L = 5 decoder diffractive layers (see 
Supplementary Fig. S11). As expected, our analyses 
revealed a significant improvement in the imaging 
resolution with higher n: initially resolving linewidths 
of ~ 0.333λ at n < 1.3, we were able to resolve a linewidth 

of ~ 0.253λ at n = 2.0, as shown in Supplementary Fig. 
S11a. However, a further increase in the refractive 
index to n = 2.4 and n = 3.0 did not result in better 
spatial resolution (see Supplementary Fig. S11b). We 
attribute this bottleneck to the relatively large lateral 
size of the encoder diffractive features (~ 0.53λ), which 
cannot effectively process all the propagating high-
spatial frequencies that are supported at n = 2.4 or 
n = 3.0. In fact, the output imaging resolution can be 
further improved by reducing the lateral feature size 
of the trainable encoder layer to ~ 0.27λ: in this case, 
using a solid-immersion dielectric material of n = 2.4, 
the encoder-decoder design could resolve linewidths 
of ~ 0.21λ as illustrated in Supplementary Fig. S12. 
Therefore, by adopting appropriate design parameters 
and diffractive feature sizes for the encoder-decoder pair, 
the imaging resolution of our solid-immersion diffractive 
imager can be further improved using dielectric materials 
with even higher refractive index values, making the 
presented approach a promising technique for super-
resolution imaging of deeply subwavelength structures.

2.7  Multiwavelength phase imaging
While the majority of our presented diffractive imagers 
were designed to perform subwavelength imaging at a 
single illumination wavelength, one can also extend the 
design principles of diffractive encoder-decoder pairs to 
operate at multiple wavelengths for potential applications 
in multispectral subwavelength information processing 
[49–51]. To demonstrate this capability, we designed 

Fig. 6 Trade-off between the output diffraction efficiency (η) and the imaging performance. a Calculated SSIM values and (b) selected blind testing 
results evaluated using phase-encoded resolution test targets with linewidths ranging from ~ 0.253λ to ~ 0.333λ for diffractive imagers trained 
to exhibit different output diffraction efficiencies. The diffractive processor consisted of 1 encoder layer and 5 decoder layers. The diffractive model 
was trained with images of phase gratings (linewidths ~ 0.2–0.53λ) and EMNIST images that excluded the test images used in a, b 
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a solid-immersion diffractive imager for color (RGB) 
imaging at three wavelengths in the visible spectrum 
(λB = 464 nm, λG = 536 nm, λR = 604 nm) and selected the 
dielectric properties of a 3D printing material, i.e., IP-Dip 
[52], for our numerical model. Each encoder/decoder 
layer had 160 × 160 diffractive neurons/features, each 
with a lateral size of 200 nm and a trainable height profile 
from 0 to 2 μm, as shown in Supplementary Fig. S13. A 
diffractive imager, consisting of 1 encoder layer and 5 
decoder layers, was designed to simultaneously perform 
the imaging task at the RGB wavelengths (λB, λG, λR). As 
shown in Supplementary Fig. S13c, a different resolution 
test target (w = 150  nm) was selected randomly at each 
wavelength to construct the input color images, which 
were clearly resolved by the solid-immersion diffractive 
imager, demonstrating a sub-wavelength resolution at 
all three wavelengths. Similarly, the diffractive imager 
was able to perform achromatic imaging at all three 
wavelengths, where the same phase image was used as 
the input for all three wavelengths and reconstructed 
successfully by the diffractive imager (see Supplementary 
Fig. S13d). These numerical results reveal the potential of 
our solid-immersion diffractive imager design framework 
to perform high-resolution imaging of sub-wavelength 
color objects, potentially enabling diverse applications 
ranging from material science to biomedical imaging and 
sensing.

2.8  Experimental demonstration of subwavelength phase 
imaging ( P → I)

We experimentally demonstrated the subwave-
length imaging capability of the solid-immersion 
diffractive imager framework using a fabricated encoder-
decoder pair designed for P → I imaging at 0.4 THz 
(λ = 0.75  mm). This proof-of-concept diffractive optical 
processor was composed of 1 encoder layer and L = 2 
decoder layers that were jointly trained using a hybrid 
dataset composed of resolution test targets and MNIST 
[53] handwritten digits (see the Sect.  3 for details). To 
physically create this diffractive imager, we developed a 
fabrication method that produced a monolithic design of 
the multi-layered diffractive encoder-decoder pair via a 
single 3D-printing session, followed by a clean-up of the 
support materials between the diffractive layers with a 
combination of mechanical and chemical processes (see 
the Sect. 3 and Supplementary Fig. S14 for details). This 
monolithic fabrication method, by and large, eliminated 
undesirable misalignments in both the axial and lateral 
directions between the diffractive layers, which could 
otherwise cause severe degradation of performance [54]. 
Figure 7a shows the design of the subwavelength imager 
consisting of a solid-immersion diffractive encoder and 
a two-layer diffractive decoder in air. Starting from the 

phase-delay distributions optimized for each encoder/
decoder layer, we calculated the corresponding height 
profiles to be fabricated (for producing the needed phase 
distributions). After their 3D printing and the subse-
quent cleaning processes (see Supplementary Fig. S14), 
we obtained the solid-immersion diffractive imager in 
a monolithic design where the encoder/decoder layers 
were well-aligned in all directions (see Fig.  7b). A com-
parison between the optimized phase profiles of the 
encoder/decoder layers shown in Fig. 7c and the photos 
of 3D-printed layers in Fig. 7d reveal the decent quality of 
our monolithic fabrication process, confirming that the 
diffractive layers were not damaged by the cleaning pro-
cess (Supplementary Fig. S14).

To experimentally test our 3D-printed solid-
immersion diffractive imager, we built a customized 
high-resolution terahertz imaging system based on 
a microprobe (TeraSpike TD-800-X-HRS, Protemics 
GmbH, Germany) and a TDS system using a plasmonic 
nanoantenna array-based terahertz source [55]. The 
photograph and schematics of the experimental set-up 
are shown in Fig.  7e, f. Each sample to be imaged was 
mounted on a 3-axis electric motor stage to perform 
the scanning process, while the signal of each scanned 
point was detected by a stationary terahertz microprobe 
with a small tip size of ~ 2  μm. The combination of the 
microprobe and the plasmonic nanoantenna array source 
exhibited a high sensitivity with a signal noise ratio (SNR) 
of ~ 90  dB at 0.4 THz (see Supplementary Fig. S15), 
ensuring high-resolution imaging of the output field of 
view of the diffractive imager.

To experimentally validate the imaging resolu-
tion of our subwavelength imager for P → I tasks, we 
first tested the fabricated monolithic diffractive pro-
cessor using phase-only input objects with periodic 
line patterns. Figure  8 shows the P → I experimen-
tal imaging results of the reconstructed horizontal and 
vertical gratings corresponding to phase-encoded lines 
with linewidths of ~ 0.333� and ~ 0.293� . Importantly, all 
the line patterns were reconstructed with good quality, 
confirming the subwavelength resolution of our solid-
immersion diffractive processor that is 3D-printed. These 
results also experimentally confirm direct phase retrieval 
of subwavelength features through P → I transforma-
tions all-optically performed by the diffractive encoder-
decoder pair. Some of the deviations observed between 
the measurement results and the ground truth might be 
attributed to the experimental errors introduced by 3D 
fabrication imperfections and potential misalignments, 
especially in the axial direction of the output/image plane 
(see Supplementary Figs. S16, S17 for details). Addi-
tional experimental results for successful imaging of vari-
ous phase-encoded resolution test targets with broader 
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linewidths (~ 0.4� and ~ 0.367� ) are also shown in Supple-
mentary Fig. S18, demonstrating the outstanding P → I 
imaging quality of the solid-immersion diffractive pro-
cessor for features of different sizes.

We also selected some oblique and curved gratings to 
further demonstrate the performance of the 3D-printed 
subwavelength diffractive imager for imaging objects 
with more complex shapes, which are shown in Fig.  9a. 
Although a slight decrease in the imaging contrast was 

Fig. 7 Fabrication method for solid-immersion diffractive imagers and the experimental setup. a Design of the multi-layered subwavelength 
imager consisting of a diffractive encoder and two decoder layers and their CAD design. b The 3D-printed monolithic imager after the cleaning 
process. c Trained phase profiles of the encoder and decoder layers of the subwavelength diffractive imager. d Fabricated layers of the diffractive 
encoder and decoder layers. e Photograph of the THz-TDS experimental setup. f Top: schematic of the THz-TDS setup. Red lines represent 
the optical path of the femtosecond pulses (central wavelength: 800 nm). Green lines represent the optical path of the terahertz wave (peak 
frequency, ~ 500 GHz, observable bandwidth, ~ 5 THz). Bottom: an optical image of the THz microprobe with a photoconductive gap size (at tip 
of the microprobe) of 2 μm
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observed, the diffractive system was still able to image and 
distinguish each line of the test gratings clearly. Because 
of the limited SNR of the terahertz imaging setup and the 
losses from the 3D-printed diffractive network, we used 
a coded-aperture design around the input object FOV to 
increase the photon flux in the system. Compared to sim-
ply opening up a flat, transparent aperture with the same 
fixed phase values around the input FOV, we employed a 

jointly optimized phase-modulation pattern around the 
object FOV, which improved the contrast of the recon-
structed images at the output image plane (see Supple-
mentary Fig. S19). To further demonstrate the external 
generalization capability of our P → I design, we tested 
it with phase-encoded objects selected from the EMN-
IST test dataset, never used during our training stage; 
we selected handwritten capital letters “U”, “C”, “L”, “A”, 

Fig. 8 Experimental demonstrations of ( P → I ) transformations corresponding to phase-encoded resolution test targets with subwavelength 
resolution. (Upper left) Input phase images, (upper middle) ground truth, (upper right) simulated imaging results, (lower left) measured intensity 
images at the output plane, and (lower right) the corresponding line profiles of the resolution-test targets with a linewidth of ~ 0.333� oriented 
in (a) x and (b) y directions as well as the resolution-test targets with a linewidth of ~ 0.293� oriented in (c) x and (d) y directions
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which were successfully imaged by our 3D-printed solid-
immersion diffractive imager as demonstrated in Fig. 9b. 
The measurement results showed high consistency with 
both the input phase images and the simulation results, 
further validating the ability of our solid-immersion dif-
fractive imager to perform subwavelength imaging tasks 
for general objects. One interesting observation that is 
particularly visible in Fig. 9b is that some of the subwave-
length features of the objects are better resolved in our 
experimental results compared to their numerical coun-
terparts (see, e.g., the opening of the handwritten ‘A’ in 
Fig. 9b). This behavior can potentially be due to the non-
linear interaction of the subwavelength photoconductive 
microprobe system (Fig. 7) with the local field distribution 
at the output plane that we experimentally imaged.

Overall, our experiments confirmed the subwavelength 
imaging capabilities of our solid-immersion diffractive 
imager, successfully resolving linewidths of 0.293λ (~ λ/2n) 
while also performing direct (all-optical) phase retrieval of 
subwavelength features through P → I transformations. 
We should note that, because the forward model of our dif-
fractive imager approximates input objects as thin layers 
with negligible thickness, it cannot reconstruct phase struc-
tures of 3D objects with large height differences that result 
in phase wrapping events. Lastly, we want to point out 
that deeper diffractive architectures were not used for our 
experimental demonstration because the 2-layer decoder 
design showed sufficient sub-wavelength image recon-
struction performance for a proof-of-concept demonstra-
tion—both numerically and experimentally; furthermore, 

Fig. 9 Experimental demonstrations of ( P → I ) transformations corresponding to phase-encoded gratings and EMNIST handwritten letters 
with subwavelength resolution. a Imaging results of different gratings with a linewidth of ~ 0.293� ; b imaging results of EMNIST handwritten letters 
“U”, “C”, “L”, “A”, demonstrating the ability of the diffractive processor to image new types of objects never seen before (external generalization). 
(Upper left) Input phase images, (upper right) simulated intensity images, and (lower) the experimentally measured output images
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the 3D printing of deeper diffractive decoders and the asso-
ciated cleaning process (as shown in supplementary Figure 
S14) can be relatively challenging. In addition to these, the 
fabrication of multiple encoder layers requires the tuning of 
the refractive index for diffractive features/neurons within 
the solid immersion medium, which can be achieved by 
emerging nanofabrication methods such as implosion fab-
rication [56]. The realization of deeper encoder/decoder 
architectures is certainly beneficial for further improving 
imaging performance and can be achieved in the future 
with the development of faster and more accurate 3D 
printing techniques that can process materials with lower 
optical losses and wider tunability in refractive indices.

3  Methods
3.1  Forward‑propagation model of solid‑immersion 

diffractive imagers
A solid-immersion diffractive imager consists of a single 
diffractive encoder layer and L diffractive decoder 
layers. A dielectric slab of index n is placed between the 
diffractive encoder layer and the object, which allows the 
transmission of high-frequency information from the 
object toward the encoder surface. Forward propagation 
of the complex electromagnetic field can be modeled as 
a sequence of (1) free-space propagation between the lth 
and (l + 1)th diffractive layers (where l = 0, 1, 2,..., L + 1) 
including the input plane (l = 0), the encoder layer (l = 1), 
the decoder layers (l = 2,..., L + 1) and the image plane 
(l = L + 2), and (2) the modulation of the optical field by 
the diffractive encoder/decoder layers (l = 1,..., L + 1). The 
propagation of the complex optical field in the air and the 
dielectric medium is modeled by the angular spectrum 
method [57]. The 2D complex optical field profile ul
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processed by the lth diffractive layer after propagation 
over an axial distance of d in a medium with a refractive 
index n can be calculated by:
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is the wavevector, and fx , fy are the spatial frequencies 
on the x–y plane, orthogonal to the direction of the wave 
propagation.

We modeled both the diffractive solid-immersion 
encoder and decoder layers as phase-only modulators 
of the complex incident fields, where the complex 
transmittance coefficient tl of the lth diffractive layer can be 
written as:

φl
(

x, y
)

 represents the phase delay values of the diffrac-
tive features on the lth diffractive layer. The 2D complex 
optical fields at the output/image plane can be derived by 
combining Eqs. (1) and (3):

where dl−1,l represents the axial distance between the 
(l–1)th and the lth layers, i
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)

 is the input optical field in 
the x–y plane.

3.2  Training loss functions
The reported computational solid-immersion networks 
were optimized using a deep learning-based training pro-
cess [47, 48, 58, 59] that adjusted the network structure to 
minimize a loss function calculated based on the compari-
son between the ground-truth phase/intensity images and 
the diffractive output images. Consistent with our previous 
equations, the intensity image of the ground truth ( G ) and 
the all-optical reconstruction intensity at the output ( O ) 
can be defined as:
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 is the optical field at the output plane calcu-
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where ∡ is the phase operator that calculates the phase 
values from a complex tensor and M is a geometrical 
transformation that magnifies the input image by a factor 
of M in each lateral direction.

As our loss function, we used the normalized mean 
squared error (NMSE) between the output and ground 
truth intensity patterns, defined as:

where O and G  represent the output and ground-truth 
intensity images, respectively, defined in Eqs. (5–6), and 
the NMSE is calculated as:

where m and n are the indices of the image pixels in x and 
y axes, respectively, and MN  represents the total number 
of pixels in each image. The diffractive processor’s output 
intensity image O is normalized based on its maximum 
intensity, max(O) , to avoid penalizing the network 
based on its diffraction efficiency but emphasize on the 
reconstruction quality.

3.3  Implementation details and training 
of solid‑immersion diffractive imagers

In the numerical and experimental demonstrations of this 
work, the diffractive imagers were trained with a hybrid 
dataset of (1) grating images as resolution test targets 
and (2) handwritten letters/digits from the EMNIST (for 
numerical tests) or the MNIST dataset (for experimental 
demonstrations). All diffractive encoder/decoder layers 
had a lateral pixel/neuron size of 0.4  mm and used 
λ = 0.75 mm. Unless otherwise stated, the axial distance 
between the input image/object and the diffractive 
encoder layer, the distances between successive encoder/
decoder layers, and the axial distance between the last 
diffractive decoder layer and the output plane were set to 
0.75 mm (1λ), 9 mm (12λ), and 12 mm (16λ), respectively.

Each diffractive layer contained 120 × 120 phase-valued 
diffractive features (64λ × 64λ) in the x–y plane for both 
numerical and experimental demonstrations. The input 
sizes of the resolution test targets and other images 
from various datasets, including MNIST, EMINST, 
FASHION-MNIST, and QuickDraw were set to 24 × 24 
and 12 × 12 pixels for solid-immersion diffractive 
imagers trained for numerical testing and experimental 
validation, respectively. During the training, each raw 
image was linearly up-sampled in both x and y directions 
by a factor of 2. To model the field propagation process 
accurately, we also up-sampled the diffractive surfaces by 
4 times, i.e., from 120 × 120 to 480 × 480 pixels, so that a 

(8)Loss(O,G) = NMSE(O,G),

(9)NMSE(O,G) = 1
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∑

m,n

(
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max(O)
− Gm,n

)2
,

lateral grid size of 0.1  mm was consistently used for all 
the calculations in the forward model. Lastly, the input 
images and the diffractive encoder/decoder layers were 
zero-padded to 520 × 520 pixels (in the x–y plane) for 
forward model calculations.

The resolution test target image datasets were created 
as images of straight and curved lines, where the height 
profile follows a sine function ranging from 0 to 1. For 
the training and validation datasets, we used 8000 and 
2000 images of lines with randomly defined curvature 
and linewidths (w = 0.15–0.4  mm), respectively. For 
blind testing, the test image dataset size corresponding 
to each linewidth/resolution was selected as 100 
images. The images of EMNIST (for numerical tests) 
or MNIST (for experimental tests) datasets were each 
divided into training, validation, and testing datasets 
without overlap, with each set containing 48,000, 
12,000, and 10,000 images, respectively. During the 
training process, hybrid datasets combining the 
resolution test targets with the EMNIST (for numerical 
tests) or MNIST (for experimental demonstrations) 
datasets were created by merging the corresponding 
training and validation datasets.

The diffractive models were optimized via a stochastic 
gradient-based error back-propagation process using 
the Adam optimizer [60] to minimize the user-defined 
loss function, Eq.  (8), with a learning rate of 0.002. The 
batch size was selected as 30. The diffractive models 
were trained and tested using PyTorch 1.12 or 1.13 with 
a single GeForce RTX 3080/3090 graphical processing 
unit (GPU, from Nvidia Inc.). The typical training time 
of a solid-immersion diffractive imager for 1000 epochs 
is ~ 8 h.

3.4  Fabrication of monolithic solid‑immersion diffractive 
imagers

The transmissive layer designs of subwavelength 
diffractive imagers were converted into an STL file with 
MATLAB. The monolithic design of this multi-layered 
structure was obtained in a single printing session by a 3D 
printer (Objet30 Pro, Stratasys Ltd.) using the ultraviolet 
curable material (VeroBlackPlus RGD875, Stratasys Ltd.) 
as the ink/printing material and the PolyJet’s gel-like 
support material (SUP705B, Stratasys Ltd) as the support 
between the diffractive layers. The support materials 
were removed with a combination of mechanical rubbing 
and chemical washing (see Supplementary Fig. S14 for 
details). First, we mechanically removed the majority of 
the support materials between the layers with a metallic 
stick and flushed the layers with waterjet for 3 min. Then, 
the sample was placed in 500  mL of 5% KOH solution 
for 5 h to soften the residual support materials and then 
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rinsed with excess DI water for 10  min to fully remove 
the KOH. Lastly, the softened residual support materials 
were removed by another waterjet, and the cleaned 
diffractive imager was air-dried.

3.5  Experimental set‑up
After the in silico training and numerical testing of the 
diffractive models, we validated the performance of 
the all-optical solid-immersion diffractive imager by 
measuring the output images using a terahertz scanning 
system. To mount the monolithic diffractive imager on 
the stage for experimental measurements, a layer holder 
that sets the positions of the input plane, output plane, 
and the diffractive layers was 3D printed (Objet30 Pro, 
Stratasys) and assembled with the fabricated monolithic 
diffractive encoder-decoder pair with test objects 
fabricated by another 3D printer (Pr 110, CADworks3D). 
In this terahertz-TDS measurement system (see Fig. 7e, f 
for details), a femtosecond pulsed laser (Coherent Mira 
900, center wavelength: λ = 800 nm, pulse length: 120 fs, 
repetition rate: 76 MHz) was used to generate an ultrafast 
optical beam that was split into two beams by a 50/50 
beam splitter. One of these two beams was used to pump 
the terahertz source to generate broadband terahertz 
radiation by a high-power plasmonic nanoantenna 
array-based terahertz source [55]. A parabolic mirror 
(focal length 9′′) was used to collimate and expand the 
generated terahertz radiation to reach a lateral beam size 
of ~ 45 mm (FWHM), which ensured that the input test 
object was uniformly illuminated during the imaging/
scanning process. The other optical beam from the 
beam splitter was focused to pump a high-sensitivity 
terahertz microprobe (TeraSpike TD-800-X-HRS, 
Protemics GmbH) with a photoconductive gap size of 2 
μm and a spatial resolution of 20  μm. The combination 
of the plasmonic nanoantenna array terahertz source 
and microprobe provides an SNR of ~ 90  dB at 0.4 THz 
(see Supplementary Fig. S15 for details). An optical 
delay stage was used to actively tune the optical path 
length difference between the optical pump and the 
incident terahertz beam on the probe. The terahertz 
time-domain signal was obtained by measuring the 
photocurrent of the microprobe as a function of the 
optical delay and it was sampled by a lock-in amplifier 
(MFLI, Zurich Instruments) connected to a computer 
for post-processing. Each time-domain signal was 
obtained by averaging 10 traces captured over 5  s. 
These multispectral intensity images (including the 
target frequency of 0.4 THz) at the output plane of the 
diffractive imager were obtained by taking the Fourier 
transform of the time-domain data of the terahertz signal 
collected by the microprobe. During the imaging process 
for each test object, the tip position of the microprobe 

was fixed at the output plane of the diffractive imager, 
while the diffractive imager was raster-scanned by a 
3-axis electrically-controlled translational stage. For each 
tested input object, we performed a 100 × 100-point scan 
with a lateral step size of 60 μm to cover a total area of 
6  mm × 6  mm on the output plane of the diffractive 
imager to measure the intensity image produced by the 
3D fabricated solid-immersion diffractive imager. For the 
resolution-test targets, the cross-sectional line-profiles 
were obtained by averaging the measured image of the 
line patterns over a distance of 3.6  mm (or 60 pixels) 
in the x direction for Fig.  8a, c and Supplementary Fig. 
S18a, c as well as in the y direction for Fig.  8b, d and 
Supplementary Fig. S18b, d.

To improve the output diffraction efficiency of solid-
immersion diffractive imagers (see Figs.  7, 8, 9), we 
used an additional loss term ( LE) that was added to the 
training loss function previously defined in Eq. (8), i.e.,

where I
(

x, y
)

=

∣

∣i(x, y)
∣

∣

2  is the intensity of the input 
field. In our experimental design, we empirically selected 
α1 = 5 and α2 = 0.8 to balance the performance trade-
off between the output image quality and the diffraction 
efficiency of the imager. LE was defined as:

where ηtarget is the targeted diffraction efficiency, and 
η(O, I) is the output diffraction efficiency calculated as:

The target diffraction efficiency was set to ηtarget = 
0.05 in the training of the solid-immersion diffractive 
imager used for the experimental demonstration; in 
our numerical simulations, we used a wider range of 
values covering ηtarget = 0.015–0.3 to better evaluate 
the performance trade-off between the diffraction 
efficiency and the imaging resolution/quality (see Fig. 6 
for details).
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