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Abstract 

Water is an essential component of the Earth’s climate, but monitoring its properties using autonomous underwa-
ter sampling robots remains a significant challenge due to lack of underwater geolocalization capabilities. Current 
methods for underwater geolocalization rely on tethered systems with limited coverage or daytime imagery data in 
clear waters, leaving much of the underwater environment unexplored. Geolocalization in turbid waters or at night 
has been considered unfeasible due to absence of identifiable landmarks. In this paper, we present a novel method 
for underwater geolocalization using deep neural networks trained on ∼ 10 million polarization-sensitive images 
acquired globally, along with camera position sensor data. Our approach achieves longitudinal accuracy of ∼55 km ( ∼
1000 km) during daytime (nighttime) at depths up to ∼8 m, regardless of water turbidity. In clear waters, the transfer 
learning longitudinal accuracy is ∼255 km at 50 m depth. By leveraging optical data in conjunction with camera posi-
tion information, our novel method facilitates underwater geolocalization and offers a valuable tool for untethered 
underwater navigation.
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1  Main
Earth’s water surface is a complex and dynamic environ-
ment, encompassing vast oceans, seas, lakes, and rivers. 
The oceans alone account for over 70% of the Earth’s 
surface area and contain an estimated 97% of the plan-
et’s water supply [1, 2]. Despite its importance, in  situ 
monitoring of water properties remains challenging, 
and less precise satellite imaging is often used to cap-
ture water surface temperature, salinity, oxygen/nitrogen 

levels, and other parameters [3, 4]. Autonomous under-
water sampling robots can provide more accurate in situ 
monitoring, but reliable geolocalization is required for 
their successful operation [5–9]. As satellite-based global 
positioning system (GPS) does not work in the under-
water environment, alternative methods for underwa-
ter localization have been explored with limited success 
[9–11]. Despite advancements in acoustic navigation, 
landmark identification, and inertial navigation, under-
water geolocalization still has limited area coverage or 
poor global accuracy [11]. Small underwater vehicles and 
scuba divers face constraints on size and power for navi-
gation devices, making precise inertial navigation and 
long-base-line acoustic navigation impractical. Visual-
based underwater geolocalization using color and polari-
zation images has demonstrated limited accuracy and 
is only effective in clear waters and during the day [12, 
13]. Therefore, submersible vehicles and scuba divers fre-
quently lack reliable geolocalization, which is crucial for 
exploratory underwater missions.
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Migratory animals provide examples of precise naviga-
tion and geolocalization in both air and water, spanning 
across the globe [14, 15]. These animals rely on various 
sensory cues, including polarization-sensitive informa-
tion from the sky or water [16–18]. Light polarization 
patterns with structure are ubiquitous in both above- and 
underwater environments. The scattering of sunlight or 
moonlight in the upper atmosphere generates distinc-
tive polarization patterns in the sky [19, 20]. Although 
humans cannot directly perceive light polarization, we 
may have utilized sky polarization patterns for navigation 
with appropriate viewing equipment [21].

When viewed from underwater, sky polarization pat-
terns are visible within the Snell window in shallow clear 
waters and can be leveraged for both geolocalization and 
navigation [22]. Various marine animals, including the 
mantis shrimp, rely on these patterns for their naviga-
tional needs [17]. However, it is important to note that 
in environments with low visibility or at greater depths 
in clear waters, the sky polarization patterns become 
unobservable, as demonstrated in supplementary videos 
1 through 8, rendering them ineffective for navigation 
purposes. Additionally, it is worth noting that underwa-
ter polarization patterns can also be observed outside the 
Snell window. The formation of these patterns arises from 
two primary physical phenomena. Firstly, the predomi-
nantly unpolarized light emitted by the sun or reflected 
by the moon undergoes partial linear polarization upon 
entering the water. Subsequently, this partially polarized 
light gets scattered by suspended particles, contributing 
to the observed polarization patterns.

Recordings of underwater polarization patterns date 
back to the 1950s [23]. As polarization imaging technol-
ogy has advanced [24–27], better understanding of this 
hidden world has been gained through in situ measure-
ments around the world [9, 28–31]. It was previously 
thought that underwater light was mainly horizontally 
polarized [32–35], making it unsuitable for geolocali-
zation. However, Waterman noted that this belief was 
incorrect [36], likely due to measurement inaccuracies, 
and suggested that underwater polarization fields could 
at least provide orientation information and potentially 
enable navigation. A recent study demonstrated geolocal-
ization accuracy of 1970 km using underwater polariza-
tion images in clear water [13]. However, the usefulness 
of underwater polarization patterns observed in turbid 
water or at night has not been established. Polarization 
in turbid water has been dismissed as horizontal [13, 37], 
and there are no recorded observations of underwater 
polarization patterns at night.

In open ocean waters or oligotrophic fresh waters 
with a low scattering coefficient (0.001  m−1), underwater 
polarization patterns can be accurately represented by 

a single scattering model, as depicted in Fig.  1a. There-
fore, straightforward inference procedures can be applied 
to achieve geolocalization in shallow clear water [13]. 
However, in coastal ocean waters and eutrophic lakes 
where the scattering coefficient can be as high as 1  m−1, 
the single scattering model is inadequate for predicting 
underwater polarization information, as evidenced by the 
underwater polarization patterns captured with an omni-
directional lens shown in Fig.  1b. The accuracy of pre-
dicted underwater polarization patterns can be improved 
by utilizing multi-scattering models that rely on three-
dimensional Monte Carlo techniques. However, integrat-
ing these models with geolocalization would necessitate 
the generation of underwater patterns at numerous loca-
tions worldwide, rendering the computational feasibil-
ity of such an approach unattainable. Similarly, at night, 
underwater polarization patterns are influenced by both 
the moon and night sky contributions, making them 
challenging to model using the single scattering model, 
even in clear water at night, as illustrated in Figs. 1c and 
2, or at greater depths. This underscores the importance 
of developing new methods for geolocalization that can 
handle high-scattering waters and low-light conditions.

Here we show that even though direct inference 
through predictive models is unmanageable in many 
underwater situations, polarization patterns produced 
by daylight in low visibility water and by nightlight in 
both high and low visibility waters allow accurate geolo-
calization. First, we collected ∼ 10 million images with 
underwater cameras capable of recording the radial 
polarization light field from four sites around the globe. 
We then trained a deep neural network to predict geolo-
cation from underwater angle of polarization (AoP) 
images collected with an omnidirectional lens, in com-
bination with camera position sensor data (Fig. 1e). We 
provide systematic comparison for underwater geolo-
calization accuracy between parametric and data driven 
model across time, date and different water visibility. We 
demonstrate that using polarization information instead 
of intensity-only images results in superior geolocaliza-
tion accuracy. Additionally, we show, for the first time 
reported in the literature, geolocalization at night, in low 
visibility waters, and at a depth of 50  m in clear waters 
using transfer learning techniques. We provide conclud-
ing remarks at the end of the paper.

2  Results
2.1  Underwater data collection and geolocalization 

methodology
We collected data from four sites with varying visibility 
and salinity to evaluate our underwater geolocalization 
method. These included a freshwater lake in Cham-
paign, IL, USA with a visibility of around 0.3 m; coastal 
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sea waters in Florida Key, FL, USA with variable visibil-
ity ranging from 0.5  m to 3  m; sea water in the bay of 
Tampa, FL, USA with a visibility of around 0.5  m; and 
a freshwater lake in Ohrid, North Macedonia with vis-
ibility exceeding 10 m (Fig.  1d). The imaging instrument 
was placed on the sea or lake floor at depths of 1  m in 
Champaign, IL, 2  m in Florida during both winter and 
summer, and 8 m and 50 m in Ohrid, North Macedonia. 
Data was collected during the winter in the Florida Keys 
with a maximum sun elevation of around 40 degrees and 
during the summer in the bay of Tampa, FL with a maxi-
mum sun elevation of approximately 86 degrees (refer to 
Additional file  1: Video S1, Additional file  2: Video S2, 
Additional file  3: Video S3, Additional file  4: Video S4, 
Additional file  5: Video S5, Additional file  6: Video S6, 
Additional file 7: Video S7, Additional file 8: Video S8 and 
Fig.  2). Due to their bay-like configuration, all four sites 
exhibited minimal surface wave activity. This favorable 
condition allowed us to gather data with minimal surface 
disturbances.

The data from each site was divided randomly into a 
training set containing 80% of the data and a testing set 
containing the remaining 20%. The images in the training 
and testing data sets were collected on different dates and 
were spatially and temporally downsampled to 100 by 
100 pixels and 1 frame per second, respectively. Frames 

in the training data where clouds completely obstructed 
the sun were manually removed. The purging was per-
formed by personnel with no access to any trained model 
or test results to avoid introducing bias.

Underwater geolocalization was achieved via either 
parametric or data driven model. In the parametric 
model, theoretical modeling of single scattering is used to 
simulate underwater polarization patterns, as illustrated 
in Fig.  3a. This is achieved by utilizing a Mueller matrix 
formalism to describe light scattering from particles in 
water and air-water refraction. To determine the cam-
era’s geolocation based on a set of underwater polariza-
tion images, the method estimates the sun’s heading and 
elevation angles by minimizing the difference between 
measured and simulated underwater polarization angles. 
In our proposed network model, geolocation is predicted 
using a sequence of angle of polarization images in three 
stages (Fig.  3c, d). Firstly, a deep network leverages iner-
tial magnetic unit parameters to predict a set of coarse 
sun locations (azimuth and elevation) for each frame 
individually. Secondly, temporal information is incorpo-
rated by another network to refine these coarse predic-
tions, resulting in fine sun locations (Fig. 3e). Finally, both 
parametric and data-driven models use a particle filter to 
estimate geolocation (longitude and latitude) by utilizing 
a large batch of sun location predictions (see Methods).

Fig. 1 Deep neural network method for underwater geolocalization based on celestial-based underwater polarization information in low and 
high visibility waters by day and by night. a–c We deployed an underwater polarization sensitive imaging system with an omnidirectional lens in 
high and low visibility waters to collect the required data. False-color images of the measured angle of polarization (AoP) and a graph comparing 
observed AoP with the parametric model’s prediction are displayed next to each drawing. Predictions made by the parametric model are unreliable 
in low visibility waters and it is ineffective at night. d We selected four different sites as indicated on the global map to collect underwater data and 
to assess the effectiveness of our geolocalization method. e Our deep neural network, in conjunction with a particle filter, uses sequences of AoP 
images to estimate the camera’s position latitude and longitude
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2.2  Daytime underwater geolocalization based 
on polarization images in low and high visibility 
waters

We compared the accuracy of geolocalization using 
our developed deep neural network approach with 
that of a parametric method. In clear waters, such as 
Lake Ohrid, North Macedonia, the difference between 
the measured underwater angle of polarization and 
the parametric model is less than 10% when the sun’s 
elevation is above approximately 30 degrees (Fig.  4a). 
However, during winter periods and summer sunrise 
and sunset, the sun’s elevation is below 30 degrees, 
and the underwater polarization patterns are affected 
by light from both the sky and the sun (Fig. 4b). These 
light interactions are not well understood and are not 
included in the parametric model, resulting in esti-
mated underwater angle of polarization with segments 
that have errors exceeding 50%. In low-visibility waters, 
such as those in Florida during the summer and win-
ter periods (Fig. 4c), the estimated angle of polarization 

has errors exceeding 50% throughout the entire day due 
to the lack of multiple scattering effects in the paramet-
ric model.

Significant inaccuracies in the estimated root mean 
squared errors (RMSEs) of the sun’s heading and eleva-
tion angles arise from large modeling errors. For instance, 
the RMSEs for the sun’s heading and elevation angles 
are 11.412◦ and 14.579◦ in Champaign, IL; 22.093◦ and 
16.874◦ during the winter in Florida; 60.283◦ and 35.862◦ 
during the summer in Florida; and 14.362◦ and 11.113◦ in 
Lake Ohrid, North Macedonia, respectively (Fig.  5 top 
row). These errors are substantially reduced with our 
deep neural network approach, which produces at least 
one order of magnitude lower RMSEs compared to the 
parametric model at all sites (Fig.  5 bottom row). The 
RMSEs for the sun’s heading and elevation angles using 
our deep neural network approach are 1.135◦ and 1.623◦ 
in Champaign, IL; 2.232◦ and 1.867◦ during the winter in 
Florida; 5.878◦ and 1.090◦ during the summer in Florida; 
and 1.290◦ and 0.845◦ at a depth of 8  m in Lake Ohrid, 

Fig. 2 a, b Intensity and AoP images captured at 14:00 local time for different sites and water depths. c, d Intensity and AoP images captured at 
17:00 local time for different sites and water depths. Note that in the intensity images, the sky is clearly visible in high-visibility waters at a shallow 
depth (4th column). However, it is not visible in low-visibility waters (1st column) or at greater depths (5th column)
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North Macedonia, respectively. The deep neural network 
approach consistently exhibits lower RMSEs for the sun’s 
heading and elevation angles compared to the model-
based approach throughout the day.

In order to assess the effectiveness of RDM, we com-
pared the RMSEs for solar angle predictions obtained 
using only the RI-ResNet network module against those 

obtained when both network modules (RI-ResNet and 
RDM) are active. When using RI-ResNet alone, the 
RMSEs for the sun’s elevation and heading were found 
to be as follows: 3.002◦ and 1.604◦ in Champaign, IL; 
13.64◦ and 5.741◦ during the winter in Florida; 16.43◦ 
and 8.591◦ during the summer in Florida; and 1.474◦ and 
0.713◦ in Lake Ohrid, North Macedonia, respectively. By 

Fig. 3 a Underwater polarization patterns mainly result from the refraction of light between air-water interfaces and scattering within the water 
medium. These patterns can be mathematically modeled using Mueller matrices. b The particle filter (PF) pipeline is illustrated with high probability 
particles shown in red and low probability particles in blue. c, d Our proposed network model includes the RI-ResNet architecture, which replaces 
each convolution layer with its RI-Conv counterpart and accounts for the radial spatial structure in omnidirectional images. e The RDM architecture 
involves a bidirectional recurrent network that models temporal dependencies between images

Fig. 4 Relative error between measured and predicted solar elevation and heading angles using parametric model in different sites around the 
world. a Angular prediction errors in Lake Ohrid, North Macedonia are relatively low due to high water visibility. b, c Angular error predictions have 
both high and low errors during different solar elevation due to multiple scattering deficiencies in the parametric model
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comparing these values with the results obtained when 
RDM is included, it can be concluded that the incorpora-
tion of RDM significantly improves the output accuracy 
of RI-ResNet.

Figure 6 displays the mean and one standard deviation 
for the particle filter covariance at the end of the day for 
both the parametric model (dashed line) and the deep 
neural network model (solid line) for the four locations 
around the globe. The parametric model-based geoloca-
tion predictions at the end of the day have a median error 
of 738  km and 1416  km in the East–West and North–
South directions in Champaign, IL; 1519 km and 567 km 
in Florida during the winter; 3947  km and 2275  km in 
Florida during the summer; and 1034 km and 629 km in 
Lake Ohrid, North Macedonia, respectively. By contrast, 
the deep neural network model yields more accurate ini-
tial angular estimates, leading to geolocalization errors of 
55  km and 156  km in the East–West and North–South 
directions in Champaign, IL; 128 km and 78 km in Flor-
ida during the winter; 56 km and 64 km in Florida dur-
ing the summer; and 50 km and 160 km at 8 m depth in 
Lake Ohrid, North Macedonia, respectively. The deep 

neural network-based geolocalization results are at least 
one order of magnitude more accurate than those of the 
parametric models.

We conducted a geolocalization accuracy evaluation 
throughout the day for both parametric and deep neural 
network methods. Figure  7 displays the results for two 
sites with high mid-day solar elevations: one with high 
visibility waters (Ohrid, North Macedonia) and one with 
low visibility waters (Tampa, Florida during the summer). 
For the parametric model estimation, geolocalization 
accuracy is highest at mid-day and decreases towards 
the end of the day due to the lack of skylight contribu-
tions in the model. In low visibility waters, geolocaliza-
tion error is uniformly high throughout the day, but the 
standard deviation decreases towards the end of the day 
due to particle filter noise reduction. The deep neural 
network model exhibits relatively constant but low errors 
throughout the entire day in both clear and low visibility 
waters, with slightly higher errors around mid-day in low 
visibility waters. This is likely due to the network having 
only observed a small number of images with high solar 
elevations (i.e., above 75◦ ). An intriguing observation was 

Fig. 5 The top and bottom figures depict the root mean squared error of the estimated solar heading and elevation angles for both the parametric 
and deep neural network models. The parametric model solely considers single scattering phenomena, leading to greater solar angular errors in 
low visibility waters (Champaign, IL and Tampa, FL) in comparison to high visibility waters (Lake Ohrid, North Macedonia). Conversely, the deep 
neural network model learns intrinsic polarization patterns that arise from both single and multiple scattering, which results in similarly low solar 
angular errors in both low and high visibility waters
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made that the variation in tides had no impact on the 
prediction of the sun’s angle and, consequently, on the 
accuracy of geolocalization. Despite the camera’s depth 
fluctuating by more than 50% at the Florida sites due to 
different tidal cycles, the underwater polarization field 
remained relatively consistent.

2.3  Transfer learning for underwater geolocalization 
at depth

To assess the accuracy of underwater geolocalization at 
greater depths, we collected polarization data at 50  m 
depth in Lake Ohrid, North Macedonia and evalu-
ated the transfer learning capability of our approach. 
Due to logistical constraints, we were only able to col-
lect continuous data for several hours over 2 days. We 
used data from 8 m depth to train our neural network, 
and data from 50 m depth to test geolocalization accu-
racy. The RMSEs for the sun’s heading and elevation 
angle predictions were 6.605◦ and 4.236◦ , respectively. 
However, the geolocalization error in the East–West 

and North–South directions increased to 473  km and 
255 km, respectively, as shown in Fig. 8 and Additional 
file 5: Video S5.

The lower accuracy of geolocalization at greater 
depths is attributed to two factors. First, the inter-
actions between light and water change as depth 
increases. Light undergoes multiple scattering and 
absorption events as it travels through deeper water. 
Although angle of polarization images at 8 m and 50 m 
depth appear visually similar, images at 50  m have 
lower degree of linear polarization and intensity than 
those at 8  m. The maximum degree of linear polari-
zation recorded at 50  m is approximately 15%, com-
pared to 35% at 8 m. Second, since the neural network 
is trained on angle of polarization images with higher 
degrees of linear polarization and intensity, it does not 
perform as well on images with lower degrees of polari-
zation and intensity. As a result, the differences in noise 
profiles between the training and test data sets limit the 
accuracy of geolocalization predictions.

Fig. 6 a The accuracy of underwater geolocalization predictions across the globe is significantly improved using a deep neural network (shown as 
a solid line) compared to a parametric model (shown as a dashed line). The global map illustrates the mean (shown as a diamond) and first standard 
deviation (shown as either a solid or dashed line) of the particle filter estimate for geolocation at the end of a day. The large errors observed in 
the mean and standard deviation of the estimated geolocation using the parametric approach are primarily due to a lack of understanding of the 
various physical phenomena that contribute to underwater polarization. b–e The close-up maps display the errors in the network model at a scale 
that allows the resolution of the covariance
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Fig. 7 Geolocalization throughout the day in low and high visibility waters. The top row (a and b) and bottom row (c and d) show geolocalization 
accuracy throughout the day using the parametric model and the deep neural network model, respectively, in both high (left) and low (right) 
visibility waters. The parametric-based underwater geolocalization has moderate to low accuracy in low visibility waters due to model deficiencies 
in incorporating all physical phenomena that contribute to underwater polarization. In contrast, the deep neural network geolocalization performs 
uniformly well throughout the day in both high and low visibility waters. The individual maps display the mean (triangle and diamond) and 
first standard deviation (solid and dashed line) of the covariance of the particle filter estimate of geolocation at noon and at the end of the day, 
respectively. The box plots represent the median and upper/lower quartiles for the North–South (purple) and East–West (orange) geolocalization 
prediction errors

Fig. 8 Underwater geolocalization data at 50 m depth in Lake Ohrid, North Macedonia. a Solar angular error and b geolocalization error across 
several hours at 50 m depth
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2.4  Nighttime underwater geolocalization
To assess the geolocalization accuracy at different moon 
phases, we collected underwater polarization data at 
night across all four sites (Fig.  9 and Additional file  6: 
Video S6, Additional file  7: Video S7, Additional file  8: 
Video S8). Because the underwater light intensity is much 
weaker at night than during the day, the camera exposure 
was set to 1 s for a moon cycle between full and gibbous, 
and to 10 s when the moon cycle was between crescent 
and quarter. However, due to the short recordings of 
less than two hours for crescent moon, the number of 
nighttime images used to train the deep neural network 
was limited. Despite this constraint, the RMSEs for the 
moon’s heading and elevation were 19.404◦ and 7.160◦ in 
Champaign, IL; 43.019◦ and 10.056◦ in Florida during the 
winter; 37.392◦ and 15.297◦ in Florida during the sum-
mer; 12.947◦ and 3.552◦ in Lake Ohrid, North Macedo-
nia, respectively. The final output from the particle filter 
provided nighttime geolocalization with East–West and 
North–South errors of 32 km and 357 km in Champaign, 
IL; 786  km and 1307  km in Florida during the winter; 
2131  km and 1650  km in Florida during the summer; 
1020 km and 285 km in Lake Ohrid, North Macedonia, 
respectively. Notably, the geolocalization accuracy was 
independent of the moon cycle (Fig. 9b).

2.5  Daytime underwater geolocalization based 
on intensity images

Two physical phenomena, refraction and in-water scat-
tering, generate a radial intensity profile that depends on 
the sun’s position, and it is possible to predict the solar 
angular position using intensity images from an omnidi-
rectional gray scale camera. To test this hypothesis, we 
used the same data set and deep neural network archi-
tecture as described earlier, but trained it with intensity-
only images. We added the intensity data from four super 
pixels to generate an intensity image. Interestingly, for 
data collected in Champaign, IL and Lake Ohrid, North 

Macedonia, the solar angle predictions based on inten-
sity images were similar to those based on polarization 
images. However, in Tampa, FL and the Florida Keys, the 
total RMSEs for solar angle predictions based on inten-
sity images were 6.760◦ and 16.071◦ , respectively, com-
pared to polarization-based RMSEs of 2.758◦ and 2.134◦ , 
respectively.

The water visibility in Lake Ohrid and in Champaign is 
different, but it remained relatively constant during the 
data collection period. The local lake in Champaign is 
small and not affected by wind conditions or rain, while 
the visibility and temperature of Lake Ohrid remain con-
stant during summer periods. Despite the high turbid-
ity and multiple light scattering events in the local lake 
in Champaign and the few scattering events due to the 
water clarity in Lake Ohrid, the network can recapitulate 
the underwater intensity image’s dependence on solar 
angles in both cases due to the constant water environ-
ment. However, in both Florida sites, water visibility var-
ied throughout the day and between different days due to 
currents, tides, and other environmental factors. These 
small changes in visibility introduce enough noise into 
the training set that prevented accurate solar prediction 
based on intensity images. However, angle of polarization 
remains robust to scattering perturbations in the water 
environment and helps improve solar angle predictions 
by the neural network [38].

3  Conclusion
This paper presents a learning-based method for highly 
accurate underwater geolocalization using an omnidi-
rectional polarization camera. The approach is effective 
across multiple sites worldwide and improves geolocali-
zation accuracy compared to the traditional parametric 
model by an order of magnitude [13]. In addition, for the 
first time reported in the literature, polarization-based 
geolocalization in low visibility waters, high visibility 
waters at 50 m depth and at night is demonstrated.

Fig. 9 Geolocalization accuracy during nighttime under different moon phases. a The global map displays the mean (represented by a diamond) 
and first standard deviation (represented by a solid line) of the particle filter estimate of geolocation at the four sites (crosses) during the new 
moon and full moon phases. b The box plots indicate the median and upper/lower quartiles for the North–South (purple) and East–West (orange) 
geolocalization prediction errors
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Underwater imaging in turbid waters or at night poses 
a significant challenge due to the limited amount of ambi-
ent light available to capture images. In order to maintain 
a high signal-to-noise ratio in the images, the exposure 
time is adjusted individually, ensuring that the average 
intensity of the image falls within the middle range of the 
imager’s dynamic range. During midday when water vis-
ibility is high, the typical image exposure time is approxi-
mately 1 millisecond. However, for low visibility water, 
the exposure time falls within the range of 50 to 500 mil-
liseconds. Conversely, during sunrise and nighttime con-
ditions, the exposure times can vary from 0.5 to 10 s.

The light scattering caused by suspended particles in 
the water diminishes the degree of linear polarization 
even further. In highly turbid waters like Tampa, Flor-
ida, and Champaign, IL, the maximum degree of linear 
polarization was approximately 15%. On the other hand, 
in the clear waters of Lake Ohrid, the maximum degree 
of linear polarization exceeded 35%. Due to the relatively 
high degree of linear polarization and the high signal-to-
noise ratio of the intensity images, there is no need for 
any denoising techniques before estimating the geolocali-
zation information from the angle of polarization images.

The physical properties of water can significantly 
impact the underwater polarization patterns, leading to 
distinctive changes in polarization at different locations. 
For instance, variations in particle density, oxygenation, 
pollution, and depth can all contribute to alterations in 
polarization patterns. Moreover, complex relief in the 
water can cause blocked scattered light, further influenc-
ing polarization. In this context, creating maps of local 
water properties may enable more precise geolocation, 
and localization at a fine scale may be feasible even in the 
presence of relief [39].

Our research presents a novel method for high-accu-
racy geolocalization using polarization in clear and tur-
bid waters, day or night, and at greater depths. This 
method offers a potential new way for aquatic creatures 
to navigate, even in low-visibility conditions. By using 
underwater background polarization information, they 
may be able to find their way around and reach their des-
tination with greater accuracy. This could have significant 
implications for marine life, as well as for human activi-
ties such as underwater exploration and search and res-
cue missions.

4  Methods
4.1  Underwater imaging instrument
The use of two distinct underwater housings, each with 
dome ports, allowed for the collection of the underwa-
ter data. The first housing was created by retrofitting a 
Blue Fin housing, while the second housing was custom-
designed using Autocad and manufactured by PCBWay 

Incorporated. Both housings housed a polarization imag-
ing sensor (FLIR Blackfly Polarization Monochrome 
Camera) which was equipped with a fisheye lens (Fujinon 
FE185C057HA-1) and an inertial magnetic unit (TCM-
XB, PNI Sensor Corporation). Communication between 
the inertial magnetic unit (IMU) and polarization cam-
era was achieved via an I2C protocol. A 100 m underwa-
ter Ethernet cable was used to connect the polarization 
camera to a computer located on the shore. This cable 
provided power to the camera and IMU while simultane-
ously transmitting data to the computer. Data acquisition 
software, which was developed in Python, was used to 
record all video data in h5 format with IMU information. 
The camera could transmit up to 20 frames per second, 
and the information was stored in a 64 TB network area 
storage where the data was compressed every night for 
efficient storage.

4.2  Underwater data collection and preprocessing
The underwater camera system was mounted on an 
extruded aluminum platform, which was able to rotate 
freely for calibration data collection of the IMU. The cali-
bration data was processed in Python using the imucal 
package. The imaging platform was then placed on the 
sea or lake floor at various depths, such as 1 m in Cham-
paign, IL, 2 m in Florida during both winter and summer, 
and 8 m and 50 m in Ohrid, North Macedonia. In some 
sites, the entire platform was randomly rotated every day 
to collect a more diverse training set. During the day, the 
exposure time was set between 0.2 and 2 ms, and the 
frame rate was set to 20. At night, the camera exposure 
was set to 1 s for a Moon cycle between full and gibbous 
(i.e. 1 frame per second) and 10 sec when the moon cycle 
was between crescent and quarter (i.e. 0.1 frame per 
second).

Prior to conducting experiments, we preprocessed the 
raw angle of polarization (AoP) image data. Firstly, we 
averaged over a 15-frame temporal window to obtain 
images at 0.66 Hz (daytime) or 0.1 Hz (nighttime) to 
reduce stochastic noise and data redundancy. Next, we 
cropped out background rows and columns from each 
frame, rescaled it to 100× 100 , and performed a calibra-
tion algorithm based on a previously published method 
[40]. Finally, a human agent who had no access to the 
geolocalization models or their results identified noisy 
frames where the sun was either occluded by thick clouds 
or below the horizon.

4.3  Polarization‑based underwater geolocalization 
with parametric model

The underwater geolocalization parametric method 
employs a theoretical model of single scattering to simulate 
underwater polarization patterns (Fig.  3a). To determine 
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the camera’s geolocation based on a set of underwater 
polarization images, the method estimates the sun’s head-
ing and elevation angles by minimizing the difference 
between measured and simulated underwater polarization 
angles. Subsequently, a particle filter is employed to deter-
mine the geolocation g (i.e., longitude and latitude) using a 
sequence of sun angle predictions.

4.3.1  Parametric model for underwater polarization patterns

To model underwater polarization patterns, a Mueller 
matrix formalism is utilized to describe light scattering 
from particles in the water ( MS ) and air-water refraction 
( MR ). Rotational matrices ( MS→D and MR→S ) are also 
included to account for any offsets between the different 
coordinate systems. The process begins with unpolarized 
sunlight, which is represented by a Stokes vector Si , and 
undergoes transmission from air to water before scatter-
ing from the particles suspended in the water. The follow-
ing equation describes this process and yields the Stokes 
vector Sd , which corresponds to the underwater light as 
detected by the polarization-sensitive camera:

The Mueller matrix for air-water refraction ( MR ) can be 
calculated as follows:

where α , β and γ are represented by the following three 
equations:

In the given equations, θi and θt represent the incident 
and transmitted angles, respectively, and are determined 
by Snell’s law using the refractive index of water relative 
to air, denoted by n:

(1)Sd = MS→DMSMR→SMRSi.

(2)MR =







α + β α − β 0 0
α − β α + β 0 0
0 0 γ 0
0 0 0 γ







(3)α =

1

2

[ 2 sin θt cos θi

sin(θi + θt) cos(θi − θt)

]2
,

(4)β =

1

2

[2 sin θt cos θi

sin(θi + θt)

]2
,

(5)γ =

4 sin2 θt cos
2 θi

sin2(θi + θt) cos2(θi − θt)
.

(6)sin θi = n sin θt .

The final step is summarized by the following equation, 
which utilizes the Mueller matrix for Rayleigh scattering 
in the water medium:

It is worth noting that the rotation matrix MR→S and 
MS→D are applied to rotate the coordinate system from 
the incident light beam to the transmitted beam and 
from the transmitted beam plane to the scattering plane, 
respectively. The rotational matrix can be expressed as 
follows:

where ϕ is the angle of rotation. Our underwater imaging 
system captures the radial underwater polarization field 
in a single snapshot. The angle of polarization is com-
puted using standard parametric equations from the raw 
data recorded by our polarization camera. To estimate 
the heading and elevation angles of the sun ( h ), a lin-
ear regression is performed by comparing the measured 
angle of polarization to the angle predicted by the single 
scattering model for different solar angles.

4.3.2  Geolocalization via particle filter
We convert sun position ( h ) to geolocation estimates 
( g ) (longitude and latitude) in the last stage. We further 
improve the accuracy of geolocation estimates by col-
lecting a sequence of sun’s heading and elevation obser-
vations ht over a period of time t ∈ 1, . . . ,T  since the 
recording camera is stationary. To achieve this, we uti-
lize a particle filter to describe the posterior probability 
P(g | h1, . . . ,hT ) [41].

We start by initializing a set of N particles within a rec-
tangular area of size 1000 km by 1000 km with uniform 
weight 1/N. Each particle represents a possible location 
of the camera, and its weight represents the probability 
of the particle being the true location. When a new meas-
urement ht is received, the weight of the j-th particle is 
updated as follows:

and after all particles have been updated, we normalize 
their weights to sum up to 1:

(7)

MS =

1

2







1+ cos2 θ cos2θ − 1 0 0

cos2θ − 1 1+ cos2 θ 0 0
0 0 2 ∗ cos θ 0
0 0 0 2 ∗ cos θ






.

(8)MR→S ,S→D =







1 0 0 0
0 cos(2ϕ) sin(2ϕ) 0
0 − sin(2ϕ) cos(2ϕ) 0
0 0 0 1






,

(9)P′(gj) = P(gj) · P(ht | gj),



Page 12 of 14Bai et al. eLight            (2023) 3:15 

To obtain the conditional probability P(ht | gj) , we first 
observe from geolocation gj at the same time as observa-
tion ht to determine the ground truth sun location, rep-
resented by h′t . Then, we use a radial basis function (RBF) 
kernel to compute the probability value, ranging from 0 
to 1, as the similarity between h′t and ht . Formally:

By comparing the computed sun locations of particles 
at each time-point with the prediction from the estima-
tion model, we can assign high posterior probabilities to 
particles that closely match the model’s prediction across 
all ht ’s on the list. Conversely, particles that deviate from 
the model’s prediction will receive low posterior prob-
abilities. Ultimately, we arrive at a distribution that indi-
cates each particle’s likelihood of being the camera’s true 
geolocation.

Initially, we distribute N particles over a large 
1000× 1000 km2 rectangle, which results in a sparse dis-
tribution where even the most accurate particle can be 
tens of kilometers away from the ground truth location. 
To overcome this issue, we employ a resampling strat-
egy, where we resample particles based on their weights 
every M observations (M is a hyper-parameter chosen 
empirically). The new particles are perturbed with Gauss-
ian noise to prevent overlap. This resampling procedure 
concentrates the particles closer to the current posterior 
mean and increases the resolution of geolocation. Our 
particle filter’s architecture is shown in Fig. 3b. We obtain 
the mean geolocation by computing the weighted mean 
of the particle locations, and the covariance is also calcu-
lated from the particles. We apply the same particle fil-
ter design to the solar predictions from our deep neural 
network model, which will be explained in the following 
section.

4.4  Polarization‑based underwater geolocalization 
with neural network model

Our proposed network model utilizes a sequence of 
angle of polarization images, denoted as (x0, . . . , xt) , to 
predict geolocation in three steps. Firstly, a deep net-
work predicts a set of coarse sun locations (azimuth 
and elevation), denoted as yi = (ai, ei) , for each frame 
xi separately by incorporating its IMU parameters. 
Secondly, another network refines these coarse predic-
tions using temporal information, resulting in fine sun 
locations denoted as (y′0, . . . , y

′

t) . Finally, a particle filter 

(10)P(gj) =
P′(gj)

∑N
k=1 P

′(gk)
.

(11)P(ht | gj) = exp

(

−

�h′t − ht�
2

2σ 2

)

.

estimates the geolocation g (longitude and latitude) 
using a large batch of fine sun location predictions.

4.4.1  Coarse sun location prediction: RI‑ResNet
We based our neural network on the ResNet-18 archi-
tecture [42]. However, this architecture has two draw-
backs when applied to omnidirectional polarization 
images. Firstly, its convolution kernels are aligned to 
the sides of the frame, and hence they do not account 
for the true spatial relationship between pixels in the 
omnidirectional image. Secondly, the architecture is 
not rotation-invariant by design, meaning it cannot 
provide consistent predictions for frames that have 
similar sun locations but different camera orientations.

We introduce a solution to these issues with a rota-
tion-invariant ResNet (RI-ResNet), which replaces 
standard convolution layers with deformable convolu-
tions [43]. These convolutions have kernels oriented 
towards the center of the frame (Fig.  3d). Addition-
ally, we add a positional encoding map to each frame 
that is calculated from IMU data. This map helps to 
recover the true orientation of each pixel, irrespective 
of the camera’s heading. The positional encoding map 
is defined as:

The variable θ represents the yaw component of the IMU 
vector. As a result, pi,j contains the absolute heading of 
pixel (i,  j). By incorporating this positional encoding 
map, the RI-ResNet architecture produces more reliable 
sun location predictions and enables rotation-based data 
augmentation. Specifically, the calculation of the approxi-
mate sun location is expressed as:

In the equation above, fϕ denotes the RI-ResNet, para-
metrized by ϕ . Note that the input angle of polarization 
image x and the positional encoding map p are joined 
together by pixel-wise concatenation (denoted by oplus). 
We train the RI-ResNet using a mean-squared-error 
(MSE) loss which compares predicted sun location to 
ground-truth. Formally:

Here yGT is the ground truth sun location (azimuth and 
elevaiton). The overall architecture of RI-ResNet is visu-
alized in Fig. 3c.

(12)φi,j = atan2(i −H/2, j−W/2)+ θ ,

(13)pi,j =

[

cos(φi,j)
sin(φi,j)

]

.

(14)y = fϕ(x ⊕ p).

(15)LMSE = �y − yGT�
2
2.
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4.4.2  Fine sun location prediction: recurrent denoising 
module

Next, we use the orderly path of the sun across the sky 
to refine the per-frame sun location estimation. This is 
achieved by training a BiGRU network, referred to as 
the recurrent denoising module (RDM), which smooths 
out the raw per-frame estimates. The RDM consid-
ers the entire list of RI-ResNet outputs (y0, . . . , yt) and 
reduces the overall zigzaggedness of the curve they 
form. Since the refinement of the sun location at a spe-
cific timestep depends on all previous and subsequent 
estimations, bidirectional recurrent neural networks 
like BiGRU are preferred. The architecture of the RDM 
is illustrated in Fig. 3e. Mathematically,

Rather than utilizing the RI-ResNet output directly to 
train the RDM, we generate the noisy input by adding 
Gaussian noise to the ground truth. This approach is 
more effective and resilient. Only during the evaluation 
phase do we combine the RI-ResNet and RDM. To opti-
mize the RDM, we use the same MSE loss, as shown in 
Eq. 12.
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Additional file 1: Video S1. Time lapse video of both intensity and angle 
of polarization recorded during the day at 8 m depth in high visibility 
waters in Lake Ohrid, North Macedonia.

Additional file 2: Video S2. Time lapse video of both intensity and angle 
of polarization recorded during the day in Tampa, Florida, USA during the 
summer of 2021.

Additional file 3: Video S3. Time lapse video of both intensity and angle 
of polarization recorded during the day in Florida Keys, Florida, USA during 
the winter of 2020/2021.

Additional file 4: Video S4. Time lapse video of both intensity and angle 
of polarization recorded during the day in Champaign, IL, USA during the 
summer/fall of 2020.

Additional file 5: Video S5. Time lapse video of both intensity and angle 
of polarization recorded during the day at 50 m depth in high visibility 
waters in Lake Ohrid, North Macedonia.

Additional file 6: Video S6. Time lapse video of both intensity and angle 
of polarization recorded during the night at 8 m depth in high visibility 
waters in Lake Ohrid, North Macedonia.

(16)hk+1, o
(1)
k+1 = GRU1(yk , hk),

(17)gk+1, o
(2)
k+1 = GRU2(yt−k , gk),

(18)y′k = MLP(o
(1)
k+1 ⊕ o

(2)
t−k).

(19)
LMSE = �RDM(yGT + ǫ)− yGT�

2
2, ǫ ∼ N (0, σ).

Additional file 7: Video S7. Time lapse video of both intensity and angle 
of polarization recorded during the night in Florida Keys, Florida, USA dur-
ing the winter of 2020/2021.

Additional file 8: Video S8. Time lapse video of both intensity and angle 
of polarization recorded during the night in Champaign, IL, USA during 
the summer/fall of 2020.
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