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Abstract 

Privacy protection is a growing concern in the digital era, with machine vision techniques widely used throughout 
public and private settings. Existing methods address this growing problem by, e.g., encrypting camera images or 
obscuring/blurring the imaged information through digital algorithms. Here, we demonstrate a camera design that 
performs class-specific imaging of target objects with instantaneous all-optical erasure of other classes of objects. 
This diffractive camera consists of transmissive surfaces structured using deep learning to perform selective imaging 
of target classes of objects positioned at its input field-of-view. After their fabrication, the thin diffractive layers col-
lectively perform optical mode filtering to accurately form images of the objects that belong to a target data class or 
group of classes, while instantaneously erasing objects of the other data classes at the output field-of-view. Using the 
same framework, we also demonstrate the design of class-specific permutation and class-specific linear transforma-
tion cameras, where the objects of a target data class are pixel-wise permuted or linearly transformed following an 
arbitrarily selected transformation matrix for all-optical class-specific encryption, while the other classes of objects are 
irreversibly erased from the output image. The success of class-specific diffractive cameras was experimentally dem-
onstrated using terahertz (THz) waves and 3D-printed diffractive layers that selectively imaged only one class of the 
MNIST handwritten digit dataset, all-optically erasing the other handwritten digits. This diffractive camera design can 
be scaled to different parts of the electromagnetic spectrum, including, e.g., the visible and infrared wavelengths, to 
provide transformative opportunities for privacy-preserving digital cameras and task-specific data-efficient imaging.
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to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory 
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this 
licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

1  Introduction
Digital cameras and computer vision techniques are 
ubiquitous in modern society. Over the past few decades, 
computer vision-assisted applications have been adapted 
massively in a wide range of fields [1–3], such as video 
surveillance [4, 5], autonomous driving assistance [6, 7], 
medical imaging [8], facial recognition, and body motion 
tracking [9, 10]. With the comprehensive deployment of 

digital cameras in workspaces and public areas, a grow-
ing concern for privacy has emerged due to the tremen-
dous amount of image data being collected continuously 
[11–14]. Some commonly used methods address this 
concern by applying post-processing algorithms to con-
ceal sensitive information from the acquired images [15]. 
Following the computer vision-aided detection of the 
sensitive content, traditional image redaction algorithms, 
such as image blurring [16, 17], encryption [18, 19], and 
image inpainting [20, 21] are performed to secure pri-
vate information such as human faces, plate numbers, or 
background objects. In recent years, deep learning tech-
niques have further strengthened these algorithmic pri-
vacy preservation methods in terms of their robustness 
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and speed [22–24]. Despite the success of these software-
based privacy protection techniques, there exists an 
intrinsic risk of raw data exposure given the fact that the 
subsequent image processing is executed after the raw 
data recording/digitization and transmission, especially 
when the required digital processing is performed on a 
remote device, e.g., a cloud-based server.

Another set of solutions to such privacy concerns can 
be implemented at the hardware/board level, in which 
the data processing happens right after the digital quan-
tization of an image, but before its transmission. Such 
solutions protect privacy by performing in-situ image 
modifications using camera-integrated online process-
ing modules. For instance, by embedding a digital sig-
nal processor (DSP) or Trusted Platform Module (TPM) 
into a smart camera, the sensitive information can be 
encrypted or deidentified [25–27]. These camera integra-
tion solutions provide an additional layer of protection 
against potential attacks during the data transmission 
stage; however, they do not completely resolve privacy 
concerns as the original information is already captured 
digitally, and adversarial attacks can happen right after 
the camera’s digital quantization.

Implementing these image redaction algorithms or 
embedded DSPs for privacy protection also creates 
some environmental impact as a compromise. To sup-
port the computation/processing of massive amounts of 
visual data being generated every day [28], i.e., billions of 
images and millions of hours of videos, the demand for 
digital computing power and data storage space rapidly 
increases, posing a major challenge for sustainability 
[29–32].

Intervening into the light propagation and image for-
mation stage and passively enforcing privacy before the 
image digitization can potentially provide more desired 
solutions to both of these challenges outlined earlier. 
For example, some of the existing works use customized 
optics or sensor read-out circuits to modify the image 
formation models, so that the sensor only captures low-
resolution images of the scene and, therefore, the iden-
tifying information can be concealed [33–35]. Such 
methods sacrifice the image quality of the entire sample 
field-of-view (FOV) for privacy preservation, and there-
fore, a delicate balance between the final image quality 
and privacy preservation exists; a change in this balance 
for different objects can jeopardize imaging performance 
or privacy. Furthermore, degrading the image quality of 
the entire FOV limits the applicable downstream tasks 
to low-resolution operations such as human pose esti-
mation. In fact, sacrificing the entire image quality can 
be unacceptable under some circumstances such as e.g., 
in autonomous driving. Additionally, since these meth-
ods establish a blurred or low-resolution pixel-to-pixel 

mapping between the input scene and the output image, 
the original information of the samples can be poten-
tially retrieved via digital inverse models, using e.g., blind 
image deconvolution or estimation of the inherent point-
spread function.

Here, we present a new camera design using diffrac-
tive computing, which images the target types/classes of 
objects with high fidelity, while all-optically and instan-
taneously erasing other types of objects at its output 
(Fig. 1). This computational camera processes the optical 
modes that carry the sample information using succes-
sive diffractive layers optimized through deep learning 
by minimizing a training loss function customized for 
class-specific imaging. After the training phase, these dif-
fractive layers are fabricated and assembled together in 
3D, forming a computational imager between an input 
FOV and an output plane. This camera design is not 
based on a standard point-spread function, and instead 
the 3D-assembled diffractive layers collectively act as an 
optical mode filter that is statistically optimized to pass 
through the major modes of the target classes of objects, 
while filtering and scattering out the major representative 
modes of the other classes of objects (learned through 
the data-driven training process). As a result, when pass-
ing through the diffractive camera, the input objects 
from the target classes form clear images at the output 
plane, while the other classes of input objects are all-opti-
cally erased, forming non-informative patterns similar to 
background noise, with lower light intensity. Since all the 
spatial information of non-target object classes is instan-
taneously erased through light diffraction within a thin 
diffractive volume, their direct or low-resolution images 
are never recorded at the image plane, and this feature 
can be used to reduce the image storage and transmission 
load of the camera. Except for the illumination light, this 
object class-specific camera design does not utilize exter-
nal computing power and is entirely based on passive 
transmissive layers, providing a highly power-efficient 
solution to task-specific and privacy-preserving imaging.

We experimentally demonstrated the success of this 
new class-specific camera design using THz radiation 
and 3D-printed diffractive layers that were assembled 
together (Fig. 1) to specifically and selectively image only 
one data class of the MNIST handwritten digit database 
[36], while all-optically rejecting the images of all the 
other handwritten digits at its output FOV. Despite the 
random variations observed in handwritten digits (from 
human to human), our analysis revealed that any arbi-
trary handwritten digit/class or group of digits could be 
selected as the target, preserving the same all-optical 
rejection/erasure capability for the remaining classes of 
handwritten digits. Besides handwritten digits, we also 
showed that the same framework can be generalized to 
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class-specific imaging and erasure of more complicated 
objects, such as some fashion products [37]. Additionally, 
we demonstrated class-specific imaging of input FOVs 
with multiple objects simultaneously present, where only 
the objects that belong to the target class were imaged at 
the output plane, while the rest were all-optically erased. 
Furthermore, this class-specific camera design was 

shown to be robust to variations in the input illumina-
tion intensity and the position of the input objects. Apart 
from direct imaging of the target objects from specific 
data classes, we further demonstrated that this diffractive 
imaging framework can be used to design class-specific 
permutation and class-specific linear transformation 
cameras that output pixel-wise permuted or linearly 

Fig. 1  Object class-specific imaging using a diffractive camera. a Illustration of a three-layer diffractive camera trained to perform object 
class-specific imaging with instantaneous all-optical erasure of the other classes of objects at its output FOV. b The experimental setup for the 
diffractive camera testing using coherent THz illumination
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transformed images (following an arbitrarily selected 
image transformation matrix) of the target class of 
objects, while all-optically erasing other types of objects 
at the output FOV—performing class-specific encryption 
all-optically.

The teachings of this diffractive camera design can 
inspire future imaging systems that consume orders of 
magnitude less computing and transmission power as 
well as less data storage, helping with our global need for 
task-specific, data-efficient and privacy-aware modern 
imaging systems.

2 � Results
2.1 � Class‑specific imaging using diffractive cameras
We first numerically demonstrate the class-specific 
camera design using the MNIST handwritten digit 
dataset, to selectively image handwritten digit ‘2’ (the 
object class of interest) while instantaneously erasing 
the other handwritten digits. As illustrated in Fig.  2a, a 
three-layer diffractive imager with phase-only modula-
tion layers was trained under an illumination wavelength 

of � . Each diffractive layer contains 120 ×  120 trainable 
transmission phase coefficients (i.e., diffractive features/
neurons), each with a size of ~ 0.53� . The axial distance 
between the input/sample plane and the first diffractive 
layer, between any two consecutive diffractive layers, and 
between the last diffractive layer and the output plane 
were all set to ~ 26.7� . The phase modulation values of 
the diffractive neurons at each transmissive layer were 
iteratively updated using a stochastic gradient-descent-
based algorithm to minimize a customized loss function, 
enabling object class-specific imaging. For the data class 
of interest, the training loss terms included the normal-
ized mean square error (NMSE) and the negative Pearson 
Correlation Coefficient (PCC) [38] between the output 
image and the input, aiming to optimize the image fidel-
ity at the output plane for the correct class of objects. For 
all the other classes of objects (to be all-optically erased), 
we penalized the statistical similarity between the output 
image and the input object (see “Methods” section for 
details). This well-balanced training loss function enabled 
the output images from the non-target classes of objects 

Fig. 2  Design schematic and blind testing results of the class-specific diffractive camera. a The physical layout of the three-layer diffractive camera 
design. b Phase modulation patterns of the converged diffractive layers of the camera. c The blind testing results of the diffractive camera. The 
output images were normalized using the same constant for visualization
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(i.e., the handwritten digits 0, 1, 3–9) to be all-optically 
erased at the output FOV, forming speckle-like back-
ground patterns with lower average intensity, whereas 
all the input objects of the target data class (i.e., hand-
written examples of digit 2) formed high-quality images 
at the output plane. The resulting diffractive layers that 
are learned through this data-driven training process are 
reported in Fig. 2b, which collectively function as a spa-
tial mode filter that is data class-specific.

After its training, we numerically tested this diffrac-
tive camera design using 10,000 MNIST test digits, which 
were not used during the training process. Figure  2c 
reports some examples of the blind testing output of the 
trained diffractive imager and the corresponding input 
objects. These results demonstrate that the diffractive 
camera learned to selectively image the input objects that 
belong to the target data class, even if they have statis-
tically diverse styles due to the varying nature of human 
handwriting. As desired, the diffractive camera generates 
unrecognizable noise-like patterns for the input objects 
from all the other data classes, all-optically erasing their 
information at its output plane. Stated differently, the 
image formation is intervened at the coherent wave prop-
agation stage for the undesired data classes, where the 
characteristic optical modes that statistically represent 
the input objects of these non-target data classes are scat-
tered out of the output FOV of our diffractive camera.

Importantly, this diffractive camera is not based on 
a standard point-spread function-based pixel-to-pixel 
mapping between the input and output FOVs, and there-
fore, it does not automatically result in signals within the 
output FOV for the transmitting input pixels that statisti-
cally overlap with the objects from the target data class. 
For example, the handwritten digits ‘3’ and ‘8’ in Fig. 2c 
were completely erased at the output FOV, regardless 
of the considerable amount of common (transmitting) 
pixels that they statistically share with the handwrit-
ten digit ‘2’. Instead of developing a spatially-invariant 
point-spread function, our designed diffractive camera 
statistically learned the characteristic optical modes 
possessed by different training examples, to converge as 
an optical mode filter, where the main modes that rep-
resent the target class of objects can pass through with 
minimum distortion of their relative phase and ampli-
tude profiles, whereas the spatial information carried by 
the characteristic optical modes of the other data classes 
were scattered out. The deep learning-based optimiza-
tion using the training images/examples is the key for 
the diffractive camera to statistically learn which optical 
modes must be filtered out and which group of modes 
needs to pass through the diffractive layers so that the 
output images accurately represent the spatial features of 
the input objects for the correct data class. As detailed in 

“Methods” section, the training loss function and its pen-
alty terms for the target data class and the other classes 
are crucial for achieving this performance.

In addition to these results summarized in Fig.  2, 
the same class-specific imaging system can also be 
adapted to selectively image input objects of other data 
classes by simply re-dividing the training image data-
set into desired/target vs. unwanted classes of objects. 
To demonstrate this, we show different diffractive cam-
era designs in Additional file 1: Fig. S1, where the same 
class-specific performance was achieved for the selec-
tive imaging of e.g., handwritten test objects from digits 
‘5’ or ‘7’, while all-optically erasing the other data classes 
at the output FOV. Even more remarkable, the diffractive 
camera design can also be optimized to selectively image 
a desired group of data classes, while still rejecting the 
objects of the other data classes. For example, Additional 
file 1: Fig. S1 reports a diffractive camera that successfully 
imaged handwritten test objects belonging to digits ‘2’, ‘5’, 
and ‘7’ (defining the target group of data classes), while 
erasing all the other handwritten digits all-optically. 
Stated differently, the diffractive camera was in this case 
optimized to selectively image three different data classes 
in the same design, while successfully filtering out the 
remaining data classes at its output FOV (see Additional 
file 1: Fig. S1).

To further demonstrate the success of the presented 
class-specific diffractive camera design for processing 
more complicated objects, we extended it to specifically 
image only one class of fashion products [37] (i.e., trou-
sers). As shown in Additional file 1: Fig. S2, a seven-layer 
diffractive camera was designed to achieve class-specific 
imaging of trousers within the Fashion MNIST data-
set [37], while all-optically erasing/rejecting four other 
classes of the fashion products (i.e., dresses, sandals, 
sneakers, and bags). These results, summarized in Addi-
tional file  1: Fig. S2, further demonstrate the successful 
generalization of our class-specific diffractive imaging 
approach to more complex objects.

Next, we evaluated the diffractive camera’s perfor-
mance with respect to the number of transmissive lay-
ers in its design (see Fig. 3 and Additional file 1: Fig. S1). 
Except for the number of diffractive layers, all the other 
hyperparameters of these camera designs were kept the 
same as before, for both the training and testing proce-
dures. The patterns of the converged diffractive layers of 
each camera design are illustrated in Additional file  1: 
Fig. S3. The comparison of the class-specific imaging 
performance of these diffractive cameras with different 
numbers of trainable transmissive layers can be found 
in Fig.  3. Improved fidelity of the output images corre-
sponding to the objects from the target data class can be 
observed as the number of diffractive layers increases, 



Page 6 of 20Bai et al. eLight            (2022) 2:14 

exhibiting higher image contrast, closely matching the 
input object features (Fig. 3a). At the same time, for the 
input objects from the non-target data classes, all the 
three diffractive camera designs generated unrecogniz-
able noise-like patterns, all-optically erasing their infor-
mation at the output. The same depth advantage can also 
be observed when another digit or a group of digits were 
selected as the target data classes. In Additional file  1: 
Fig. S1, we compare the diffractive camera designs with 
three, five, and seven successive layers and demonstrate 
that deeper diffractive camera designs with more layers 
imaged the target classes of objects with higher fidelity 
and contrast compared to those with fewer diffractive 
layers.

We also quantified the blind testing performance of 
each diffractive camera design by calculating the aver-
age PCC value between the output images and the 
ground truth (i.e., input objects); see Fig.  3b. For this 
quantitative analysis, the MNIST testing dataset was 

first divided into target class objects ( n1 = 1032 hand-
written test objects for digit ‘2’) and non-target class 
objects ( n2 =  8968 handwritten test objects for all the 
other digits), and the average PCC value was calcu-
lated separately for each object group. For the target 
data class of interest, the higher PCC value presents 
an improved imaging fidelity. For the other, non-target 
data classes, however, the absolute PCC values were 
used as an “erasure figure-of-merit”, as the PCC values 
close to either 1 or −1 can indicate interpretable image 
information, which is undesirable for object erasure. 
Therefore, the average PCC values of the target class 
objects ( n1 ) and the average absolute PCC values of the 
non-target classes of objects ( n2 ) are presented in the 
first two charts in Fig.  3b. The depth advantage of the 
class-specific diffractive camera designs is clearly dem-
onstrated in these results, where a deeper diffractive 
imager with e.g., five transmissive layers achieved (1) a 
better output image fidelity and a higher average PCC 

Fig. 3  Performance advantages of deeper diffractive cameras. a Comparison of the output images using diffractive camera designs with three, 
four, and five layers. The output images at each row were normalized using the same constant for visualization. b Quantitative comparison of the 
three diffractive camera designs. The left panel compares the average PCC values calculated using input objects from the target data class only (i.e., 
1032 different handwritten digits). The middle panel compares the average absolute PCC values calculated using input objects from the other data 

classes (i.e., 8968 different handwritten digits). The right panel plots the average output intensity ratio ( R ) of the target to non-target data classes
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value for imaging the target class of objects, and (2) an 
improved all-optical erasure of the undesired objects 
(with a lower absolute PCC value) for the non-target 
data classes as shown in Fig. 3b.

In addition to these, a deeper diffractive camera also 
creates a stronger signal intensity separation between 
the output images of the target and non-target data 
classes. To quantify this signal-to-noise ratio advantage 
at the output FOV, we defined the average output inten-
sity ratio ( R ) of the target to non-target data classes as:

where the numerator is the average output intensity of 
n1 = 1032 test objects from the target data class (denoted 
as O+

i ) , and the denominator is the average output inten-
sity of n2 =  8968 test objects from all the other data 
classes (denoted as O−

i ) . The R values of three-, four-, 
and five-layer diffractive camera designs were found to 
be 1.354, 1.464, and 1.532, respectively, as summarized 
in Fig. 3b. These quantitative results once again confirm 
that a deeper diffractive camera with more trainable lay-
ers exhibits a better performance in its class-specific 
imaging task and achieves an improved signal-to-noise 
ratio at its output.

Note that, a class-specific diffractive camera trained 
with the standard grayscale MNIST images retains its 
designed functionality even when the input objects face 
varying illumination conditions. To demonstrate this, 
we first blindly tested the five-layer diffractive camera 
design reported in Fig. 3a under varying levels of inten-
sity (from low to high intensity and eventually satu-
rated, where the grayscale features of the input objects 
became binary). As reported in Additional file 2: Movie 
S1, the diffractive camera selectively images the input 
objects from the target class and robustly erases the 
information of the non-target classes of input objects, 
regardless of the intensity, even when the objects 
became saturated and structurally deformed from their 
grayscale features. We further blindly tested the same 
five-layer diffractive camera design reported in Fig.  3a 
with the input objects illuminated under spatially non-
uniform intensity distributions, deviating from the 
training features. As shown in Additional file 3: Movie 
S2, the class-specific diffractive camera still worked as 
designed under non-uniform input illumination inten-
sities, demonstrating its effectiveness and robustness in 
handling complex scenarios with varying lighting con-
ditions. These input distortions highlighted in Addi-
tional file 2: Movie S1, Additional file 3: Movie S2 were 
never seen/used during the training phase, and illus-
trate the generalization performance of our diffractive 

(1)R =
1
n1

∑n1
i=1O

+
i

1
n2

∑n2
i=1O

−
i

camera design as an optical mode filter, performing 
class-specific imaging.

2.2 � Simultaneous imaging of multiple objects 
from different data classes

In a more general scenario, multiple objects of differ-
ent classes can be presented in the same input FOV. To 
exemplify such an imaging scenario, the input FOV of the 
diffractive camera was divided into 3 × 3 subregions, and 
a random handwritten digit/object could appear in each 
subregion (see e.g., Fig. 4). Based on this larger FOV with 
multiple input objects, a three-layer and a five-layer dif-
fractive camera were separately designed to selectively 
image the whole input plane, all-optically erasing all 
the presented objects from the non-target data classes 
(Fig. 4a). The design parameters of these diffractive cam-
eras were the same as the cameras reported in the pre-
vious subsection, except that each diffractive layer was 
expanded from 120 × 120 to 300 × 300 diffractive pixels to 
accommodate the increased input FOV. During the train-
ing phase, 48,000 MNIST handwritten digits appeared 
randomly at each subregion, and the handwritten digit 
‘2’ was selected as our target data class to be specifically 
imaged. The diffractive layers of the converged camera 
designs are shown in Fig. 4b for the three-layer diffractive 
camera and in Fig. 4c for the five-layer diffractive camera.

During the blind testing phase of each of these dif-
fractive cameras, the input test objects were randomly 
generated using the combinations of 10,000 MNIST test 
digits (not included in the training). Our imaging results 
reported in Fig.  4a reveal that these diffractive camera 
designs can selectively image the handwritten test objects 
from the target data class, while all-optically erasing the 
other objects from the remaining digits in the same FOV, 
regardless of which subregion they are located at. It is 
also demonstrated that, compared with the three-layer 
design, the deeper diffractive camera with five trained 
layers generated output images with improved fidel-
ity and higher contrast for the target class of objects, as 
shown in Fig.  4a. At the same time, this deeper diffrac-
tive camera achieved stronger suppression of the objects 
from the non-target data classes, generating lower output 
intensities for these undesired objects.

2.3 � Class‑specific camera design with random object 
displacements over a large input field‑of‑view

In consideration of different imaging scenarios, where 
the target objects can appear at arbitrary spatial loca-
tions within a large input FOV, we further demonstrated 
a class-specific camera design that selectively images the 
input objects from a given data class within a large FOV. 
As the space-bandwidth product at the input (SBPi) and 
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Fig. 4  Simultaneous imaging of multiple objects of different data classes using a diffractive camera. a Schematic and the blind testing results of 
a three-layer diffractive camera and a five-layer diffractive camera. The output images in each row were normalized using the same constant for 
visualization. b Phase modulation patterns of the converged diffractive layers for the three-layer diffractive camera design. c Phase modulation 
patterns of the converged diffractive layers for the five-layer diffractive camera design
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the output (SBPo) planes increased in this case, we used a 
deeper architecture with more diffractive neurons, since 
in general the number of trainable diffractive features in a 
given design needs to scale proportional to SBPi × SBPo [39, 
40]. Therefore, we used seven diffractive layers, each with 
300 ×  300 diffractive neurons/pixels. During the training 
phase, 48,000 MNIST handwritten digits were randomly 
placed within the input FOV of the camera, one by one, 
and the handwritten digit ‘2’ was selected to be specifically 
imaged at the corresponding location on the output/image 
plane while the input objects from the other classes were to 
be erased (see the “Methods” section). As demonstrated in 
Additional file 4: Movie S3, test objects from the target data 
class (the handwritten digit ‘2’) can be faithfully imaged 
regardless of their varying locations, while the objects from 
the other data classes were all-optically erased, only yield-
ing noisy images at the output plane. This deeper diffractive 
camera exhibits class-specific imaging over a larger input 
FOV regardless of the random displacements of the input 
objects. The blind testing performance shown in Addi-
tional file 4: Movie S3 can be further improved with wider 
and deeper diffractive camera architectures with more 
trainable features to better cope with the increased space-
bandwidth product at the input and output fields-of-view.

2.4 � Class‑specific permutation camera design
Apart from directly imaging the objects from a target 
data class, a class-specific diffractive camera can also 
be designed to output pixel-wise permuted images of 
target objects, while all-optically erasing other types of 
objects. To demonstrate this class-specific image permu-
tation as a form of all-optical encryption, we designed a 
five-layer diffractive permutation camera, which takes 
MNIST handwritten digits as its input and performs an 
all-optical permutation only on the target data class (e.g., 
handwritten digit ‘2’). The corresponding inverse per-
mutation operation can be sequentially applied on the 
pixel-wise permuted output images to recover the origi-
nal handwritten digits, ‘2’. The other handwritten digits, 
however, will be all-optically erased, with noise-like fea-
tures appearing at the output FOV, before and after the 
inverse permutation operation (Fig.  5a). Stated differ-
ently, the all-optical permutation of this diffractive cam-
era operates on a specific data class, whereas the rest of 
the objects from other data classes are irreversibly lost/
erased at the output FOV.

To design this class-specific permutation camera, a ran-
dom permutation matrix P was first generated (Fig.  5), 
which describes a unique one-to-one mapping of each 
image pixel at the input FOV to a new location/pixel at the 
output FOV. This randomly selected, desired permuta-
tion matrix P was applied to each input image G and the 
resulting permuted image (PG) was used as the ground 
truth throughout the training process of the permutation 
camera. The training loss function remained the same as in 
the previous five-layer diffractive design reported in Fig. 3a; 
however, instead of calculating the loss using the output 
and the input ( G ) images, this class-specific permutation 
camera design was optimized by minimizing the loss cal-
culated using the output images and the permuted input 
images ( PG ). The converged diffractive layers of this class-
specific permutation camera are presented in Fig. 5b.

During the blind testing phase, the designed class-spe-
cific permutation camera was tested with 10,000 MNIST 
digits, never used in the training phase. As demonstrated 
in Fig.  5a, this permutation camera learned to selectively 
permute the input objects that belong to the target class 
(i.e., the handwritten digit ‘2’), generating output inten-
sity patterns that closely resemble PG . This class-specific 
all-optical permutation operation performed by the dif-
fractive camera resulted in uninterpretable patterns of the 
target objects at the output FOV, which cannot be decoded 
without the knowledge of the permutation matrix, P . On 
the other hand, for the input objects that belong to other 
data classes, the same permutation camera design gener-
ated noise-like, low-intensity patterns that do not match 
the permuted images ( PG ). In fact, by applying the inverse 
permutation ( P−1 ) operation on the output images of the 
diffractive camera, the original digits of interest from the 
target data class can be faithfully reconstructed, whereas all 
the other classes of objects ended up in noise-like patterns 
(see the last column of Fig. 5a), which illustrates the success 
of this class-specific permutation camera.

2.5 � Class‑specific linear transformation camera design
As a more general and even more challenging case of the 
class-specific permutation camera reported in the previous 
section, here we report the design of a class-specific linear 
transformation camera (Fig. 6), which performs an arbitrarily 
selected invertible linear transformation at its output FOV for 
a desired class of objects, while all-optically erasing the other 
classes of objects, i.e., they cannot be retrieved even if the 

Fig. 5  Class-specific permutation camera. a Illustration of a five-layer diffractive camera trained to perform class-specific permutation operation 

(denoted as P ) with instantaneous all-optical erasure of the other classes of objects at its output FOV. Application of an inverse permutation ( P−1 ) 
to the output images recovers the original objects of the target data class, whereas the rest of the objects from other data classes are irreversibly 
lost/erased at the output FOV. The output images were normalized using the same constant for visualization. b Phase modulation patterns of the 
converged diffractive layers of the class-specific permutation camera

(See figure on next page.)
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Fig. 5  (See legend on previous page.)
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inverse linear transformation were to be applied at the output 
of the camera. To achieve this goal, we designed a seven-layer 
linear transformation diffractive camera, which takes MNIST 
handwritten digits as its input and performs an all-optical lin-
ear transformation only on the target data class (which was 
selected as the handwritten digit ‘2’). During its blind testing 
phase, the designed class-specific linear transformation cam-
era was tested with 10,000 MNIST digits, never used in the 
training phase. After the linear transformation operation per-
formed all-optically through the diffractive camera, the out-
put images become uninterpretable, i.e., become encrypted 
(unless one has the “key”, i.e., the inverse transformation 
matrix). The corresponding inverse linear transformation, i.e., 
the key, can be subsequently applied to the transformed out-
put images of the target class of objects to recover the origi-
nal handwritten input digits, ‘2’. Similar to the class-specific 
permutation camera design (shown in Fig. 5), the other hand-
written digits are all-optically erased, with noise-like features 
appearing at the output FOV, which cannot be retrieved back 
even after the inverse linear transformation (see Fig. 6). Stated 
differently, the all-optical linear transformation (i.e., the “lock” 
or the encryption) of this diffractive camera only operates 
on the objects of a specific data class (where the key would 
be able to bring the images of the objects back through an 
inverse linear transformation), whereas the rest of the objects 
from the other data classes are irreversibly lost/erased at the 
output FOV even if one has access to the correct key (Fig. 6).

2.6 � Experimental demonstration of a class‑specific 
diffractive camera

We experimentally demonstrated the proof of concept 
of a class-specific diffractive camera by fabricating and 
assembling the diffractive layers using a 3D printer and 
testing it with a continuous wave source at � = 0.75 mm 
(Fig. 7a). For these experiments, we trained a three-layer 
diffractive camera design using the same configuration as 
the system reported in Fig. 2, with the following changes: 
(1) the diffractive camera was “vaccinated” during its 
training phase against potential experimental misalign-
ments [41], by introducing random displacements to the 
diffractive layers during the iterative training and opti-
mization process (Fig. 7b, see the “Methods” section for 
details); (2) the handwritten MNIST objects were down-
sampled to 15 × 15 pixels to form the 3D-fabricated input 

objects; (3) an additional image contrast-related penalty 
term was added to the training loss function to enhance 
the contrast of the output images from the target data 
class, which further improved the signal-to-noise ratio 
of the diffractive camera design. The resulting diffractive 
layers, including the pictures of the 3D-printed camera, 
are shown in Fig. 7b, c.

To blindly test the 3D-assembled diffractive camera 
(Fig. 7c), 12 different MNIST handwritten digits, includ-
ing three digits from the target data class (digit ‘2’) and 
nine digits from the other data classes were used as the 
input test objects of the diffractive camera. The output 
FOV of the diffractive camera (36 × 36 mm2) was scanned 
using a THz detector forming the output images. The 
experimental imaging results of our 3D-printed diffrac-
tive camera are demonstrated in Fig. 8, together with the 
input test objects and the corresponding numerical sim-
ulation results for each input object. The experimental 
results show a high degree of agreement with the numer-
ically expected results based on the optical forward 
model of our diffractive camera, and we observe that the 
test objects from the target data class were imaged well, 
while the other non-target test objects were completely 
erased at the output FOV of the camera. The success of 
these proof-of-concept experimental results further con-
firms the feasibility of our class-specific diffractive cam-
era design.

3 � Discussion
We reported a diffractive camera design that performs 
class-specific imaging of target objects while instanta-
neously erasing other objects all-optically, which might 
inspire energy-efficient, task-specific and secure solu-
tions to privacy-preserving imaging. Unlike conven-
tional privacy-preserving imaging methods that rely on 
post-processing of images after their digitization, our 
diffractive camera design enforces privacy protection 
by selectively erasing the information of the non-target 
objects during the light propagation, which reduces the 
risk of recording sensitive raw image data.

To make this diffractive camera design even more resil-
ient against potential adversarial attacks, one can moni-
tor the illumination intensity as well as the output signal 
intensity and accordingly trigger the camera recording 

(See figure on next page.)
Fig. 6  Class-specific linear transformation camera. a Illustration of a seven-layer diffractive camera trained to perform a class-specific linear 

transformation (denoted as T  ) with instantaneous all-optical erasure of the other classes of objects at its output FOV. This class-specific all-optical 

linear transformation operation performed by the diffractive camera results in uninterpretable patterns of the target objects at the output FOV, 

which cannot be decoded without the knowledge of the transformation matrix, T  , or its inverse. By applying the inverse linear transformation 

( T−1 ) on the output images of the diffractive camera, the original images of interest from the target data class can be faithfully reconstructed. 
On the other hand, the input objects from the other data classes end up in noise-like patterns both before and after applying the inverse linear 
transformation, demonstrating the success of this class-specific linear transformation camera design. The output images were normalized using the 
same constant for visualization. b Phase modulation patterns of the converged diffractive layers of the class-specific linear transformation camera



Page 12 of 20Bai et al. eLight            (2022) 2:14 

Fig. 6  (See legend on previous page.)
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only when the output signal intensity is above a certain 
threshold. Based on the intensity separation that is cre-
ated by the class-specific imaging performance of our dif-
fractive camera, an intensity threshold can be determined 
at the output image sensor to trigger image capture 
only when a sufficient number of photons are received, 
which would eliminate the recording of any digital sig-
nature corresponding to non-target objects at the input 
FOV. Such an intensity threshold-based recording for 

class-specific imaging also eliminates unnecessary stor-
age and transmission of image data by only digitizing 
the target information of interest from the desired data 
classes.

In addition to securing the information of the unde-
sired objects by all-optically erasing them at the output 
FOV, the class-specific permutation and class-specific 
linear transformation camera designs reported in Figs. 5, 
6 can further perform all-optical image encryption for 

Fig. 7  Experimental setup for object class-specific imaging using a diffractive camera. a Schematic of the experimental setup using THz 
illumination. b Schematic of the misalignment resilient training of the diffractive camera and the converged phase patterns. c Photographs of the 
3D printed and assembled diffractive system
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the desired classes of objects, providing an additional 
layer of data security. Through the data-driven training 
process, the class-specific permutation camera learns to 
apply a randomly selected permutation operation on the 
target class of input objects, which can only be inverted 
with the knowledge of the inverse permutation opera-
tion; this class-specific permutation camera can be used 
to further secure the confidentiality of the images of the 
target data class.

Compared to the traditional digital processing-based 
methods, the presented diffractive camera design has the 
advantages of speed and resource savings since the entire 
non-target object erasure process is performed as the 
input light diffracts through a thin camera volume at the 

speed of light. The functionality of this diffractive camera 
can be enabled on demand by turning on the coherent 
illumination source, without the need for any additional 
digital computing units or an external power supply, 
which makes it especially beneficial for power-limited 
and continuously working remote systems.

It is important to emphasize that the presented dif-
fractive camera system does not possess a traditional, 
spatially-invariant point-spread function. A trained dif-
fractive camera system performs a learned, complex-val-
ued linear transformation between the input and output 
fields that statistically represents the coherent imaging 
of the input objects from the target data class. Through 
the data-driven training process using examples of the 

Fig. 8  Experimental results of object class-specific imaging using a 3D-printed diffractive camera
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input objects, this complex-valued linear transformation 
performed by the diffractive camera converged into an 
optical mode filter that, by and large, preserves the phase 
and amplitude distributions of the propagating modes 
that characteristically represent the objects of the target 
data class. Because of the additional penalty terms that 
are used to all-optically erase the undesired data classes, 
the same complex-valued linear transformation also acts 
as a modal filter, scattering out the characteristic modes 
that statistically represent the other types of objects that 

do not belong to the target data class. Therefore, each 
class-specific diffractive camera design results from this 
data-driven learning process through training examples, 
optimized via error backpropagation and deep learning.

Also, note that the experimental proof of concept for 
our diffractive camera was demonstrated using a spa-
tially-coherent and monochromatic THz illumination 
source, whereas the most commonly used imaging sys-
tems in the modern digital world are designed for vis-
ible and near-infrared wavelengths, using broadband and 
incoherent (or partially-coherent) light. With the recent 
advancements in state-of-the-art nanofabrication tech-
niques such as electron-beam lithography [42] and two-
photon polymerization [43], diffractive camera designs 
can be scaled down to micro-scale, in proportion to the 
illumination wavelength in the visible spectrum, with-
out altering their design and functionality. Furthermore, 
it has been demonstrated that diffractive systems can be 
optimized using deep learning methods to all-optically 
process broadband signals [44]. Therefore, nano-fab-
ricated, compact diffractive cameras that can work in 
the visible and IR parts of the spectrum using partially-
coherent broadband radiation from e.g., light-emitting 
diodes (LEDs) or an array of laser diodes would be feasi-
ble in the near future.

4 � Methods
4.1 � Forward‑propagation model of a diffractive camera
For a diffractive camera with N diffractive layers, the 
forward propagation of the optical field can be modeled 
as a sequence of (1) free-space propagation between the 
lth and (l  +  1)th layers ( l = 0, 1, 2, . . . ,N  ), and (2) the 
modulation of the optical field by the lth diffractive layer 
( l = 1, 2, . . . ,N ) , where the 0th layer denotes the input/
object plane and the (N + 1)th layer denotes the output/
image plane. The free-space propagation of the complex 

field is modeled following the angular spectrum approach 
[45]. The optical field ul

(
x, y

)
 right after the lth layer after 

being propagated for a distance of d can be written as 
[46]:

where Pd represents the free-space propagation opera-
tor, F  and F−1 are the two-dimensional Fourier trans-
form and the inverse Fourier transform operations, and 
H(fx, fy; d) is the transfer function of free space:

where j =
√
−1 , k = 2π

�
 and � is the wavelength of the 

illumination light. fx and fy are the spatial frequencies 
along the x and y directions, respectively.

We consider only the phase modulation of the trans-
mitted field at each layer, where the transmittance coef-
ficient tl of the lth diffractive layer can be written as:

where φl
(
x, y

)
 denotes the phase modulation of the train-

able diffractive neuron located at 
(
x, y

)
 position of the lth 

diffractive layer. Based on these definitions, the complex 
optical field at the output plane of a diffractive camera 
can be expressed as:

where dl−1,l represents the axial distance between the 
(l −  1)th and the lth layers, g

(
x, y

)
 is the input optical 

field, which is the amplitude of the input objects (hand-
written digits) used in this work.

4.2 � Training loss function
The reported diffractive camera systems were optimized 
by minimizing the loss functions that were calculated 
using the intensities of the input and output images. The 
input and output intensities G and O , respectively, can be 
written as:

The loss function, calculated using a batch of training 
input objects G with the corresponding output images O 
can be defined as:
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where O+,G+ represent the output and input images 
from the target data class (i.e., desired object class), and 
O

−,G− represent the output and input images from the 
other data classes (to be all-optically erased), respectively.

The Loss+ is designed to reduce the NMSE and enhance 
the correlation between any target class input object O+ 
and its output image G+ , so that the diffractive camera 
learns to faithfully reconstruct the objects from the target 
data class, i.e.,

where α1 and α2 are constants and NMSE is defined as:

m and n are the pixel indices of the images, and MN  
represents the total number of pixels in each image. The 
output image O+ was normalized by its maximum pixel 
value, max(O+) . The PCC value between any two images 
A and B is calculated using [38]:

The term 
(
1− PCC

(
O+,G+)) was used in Loss+ in 

order to maximize the correlation between O+ and G+ , as 
well as to ensure a non-negative loss value since the PCC 
value of any two images is always between − 1 and 1.

Different fromLoss+ , the Loss− function is designed to 
reduce (1) the absolute correlation between the output 
O− and its corresponding input G− , (2) the absolute cor-
relation between O− and an arbitrary object G+

k  from the 
target class, and (3) the correlation between O− and itself 
shifted by a few pixels O−

sft , which can be formulated as:

where β1 , β2 and β3 are constants. Here the G+
k  refers 

to an image of an object from the target data class in 
the training set, which was randomly selected for every 
training batch, and the subscript k refers to a random 
index. In other words, within each training batch, the 
PCC

(
O−,G+

k

)
 was calculated using the output image 

from the non-target data class and a random ground 
truth image from the target class. By adding such a loss 
term, we prevent the diffractive camera from converging 
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to a solution where all the output images look like the 
target object. The O−

sft was obtained using:

where sx = sy = 5 denote the number of pixels that O− 
is shifted in each direction. Intuitively, a natural image 
will maintain a high correlation with itself, shifted by a 
small amount, while an image of random noise will not. 
By minimizing PCC

(
O−,O−

sft

)
 , we forced the diffractive 

camera to generate uninterpretable noise-like output pat-
terns for input objects that do not belong to the target 
data class.

The coefficients (α1,α2,β1,β2,β3) in the two loss func-
tions were empirically set to (1, 3, 6, 3, 2).

4.3 � Digital implementation and training scheme
The diffractive camera models reported in this work 
were trained with the standard MNIST handwritten digit 
dataset under � = 0.75 mm illumination. Each diffrac-
tive layer has a pixel/neuron size of 0.4 mm, which only 
modulates the phase of the transmitted optical field. The 
axial distance between the input plane and the first dif-
fractive layer, the distances between any two successive 
diffractive layers, and the distance between the last dif-
fractive layer and the output plane are set to 20 mm, i.e., 
dl−1,l = 20 mm (l = 1, 2, . . . ,N + 1) . For the diffractive 
camera models that take a single MNIST image as its 
input (e.g., reported in Figs.  2, 3), each diffractive layer 
contains 120 ×  120 diffractive pixels. During the train-
ing, each 28 ×  28 MNIST raw image was first linearly 
upscaled to 90 ×  90 pixels. Next, the upscaled training 
dataset was augmented with random image transforma-
tions, including a random rotation by an angle within 
[−10◦,+10◦] , a random scaling by a factor within [0.9, 
1.1], and a random shift in each lateral direction by an 
amount of [−2.13�,+2.13�].

For the diffractive camera model reported in Fig. 4 that 
takes multiplexed objects as its input, each diffractive 
layer contains 300 ×  300 diffractive pixels. The MNIST 
training digits were first upscaled to 90 ×  90 pixels and 
then randomly transformed with [−10◦,+10◦] angular 
rotation, [0.9, 1.1] scaling, and [−2.13�,+2.13�] transla-
tion. Nine different handwritten digits were randomly 
selected and arranged into 3 × 3 grids, generating a mul-
tiplexed input image with 270 × 270 pixels for the diffrac-
tive camera training.

For the diffractive permutation camera reported in 
Fig.  5, each diffractive layer contains 120 ×  120 dif-
fractive pixels. The design parameters of this class-
specific permutation camera were kept the same as 
the five-layer diffractive camera reported in Fig.  3a, 
except that the handwritten digits were down-sampled 

(13)O−
sft

(
x, y

)
= O−(x − sx, y− sy

)
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to 15 × 15 pixels considering that the required compu-
tational training resources for the permutation opera-
tion increase quadratically with the total number of 
input image pixels. The MNIST training digits were 
augmented using the same random transformations 
as described above. The 2D permutation matrix P was 
generated by randomly shuffling the rows of a 225 × 225 
identity matrix. The inverse of P was obtained by using 
the transpose operation, i.e., P−1 = P

T  . The training 
loss terms for the class-specific permutation camera 
remained the same as described in Eqs.  (8), (9), and 
(12), except that the permuted input images ( PG ) were 
used as the ground truth, i.e.,

For the seven-layer diffractive linear transformation 
camera reported in Fig.  6, each diffractive layer con-
tains 300 ×  300 diffractive neurons, and the axial dis-
tance between any two consecutive planes was set to 
45 mm (i.e., dl−1,l = 20 mm, for l = 1, 2, . . . ,N + 1) . The 
2D linear transformation matrix T  was generated by 
randomly creating an invertible matrix with each row 
having 20 non-zero random entries, and normalized 
so that the summation of each row is 1 (for conserving 
energy); see Fig. 6 for the selected T  . The invertibility of 
T  was validated by calculating its determinant. During 
the training, the loss functions were applied to the dif-
fractive camera output and the ground truth after the 
inverse linear transformation, i.e., T−1O and T−1(TG) . 
The other details of the training loss terms for the 
class-specific linear transformation camera remained 
the same as described in Eqs. (8), (9), and (12).

The diffractive camera trained with the Fashion 
MNIST dataset (reported in Additional file  1: Fig. S2) 
contains seven diffractive layers, each with 300 ×  300 
pixels/neurons. The axial distance between any two 
consecutive planes was set to 45  mm (i.e., dl−1,l = 20 
mm, for l = 1, 2, . . . ,N + 1) . During the training, each 
Fashion MNIST raw image was linearly upsampled to 
90 × 90 pixels and then augmented with random trans-
formations of [−10◦,+10◦] angular rotation, [0.9, 1.1] 
physical scaling, and [−2.13�,+2.13�] lateral transla-
tion. The loss functions used for training remained the 
same as described in Eqs. (8), (9), and (12).

The spatial displacement-agnostic diffractive camera 
design with the larger input FOV (reported in Addi-
tional file 4: Movie S3) contains seven diffractive layers, 
each with 300 × 300 pixels/neurons. The axial distance 
between any two consecutive planes was set to 45 mm 
(i.e., dl−1,l = 20 mm, for l = 1, 2, . . . ,N + 1) . Dur-
ing the training, each MNIST raw image was linearly 

(14)

LossPermutation(O,PG) = Loss+
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O
+
,PG

+)

+ Loss−
(
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−
,PG

−
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+
k

)

upsampled to 90 × 90 pixels, and then was randomly 
placed within a larger input FOV of 140 × 140 pixels for 
training. The loss functions were the same as described 
in Eqs.  (8), (9), and (12). The input objects distributed 
within a FOV of 120 × 120 pixels were demonstrated 
during the blind testing shown in Additional file  4: 
Movie S3.

The MNIST handwritten digit dataset was divided 
into training, validation, and testing datasets without 
any overlap, with each set containing 48,000, 12,000, 
and 10,000 images, respectively. For the diffractive cam-
era trained with the Fashion MNIST dataset, five dif-
ferent classes (i.e., trousers, dresses, sandals, sneakers, 
and bags) were selected for the training, validation, and 
testing, with each set containing 24,000, 6000, and 5000 
images without overlap, respectively.

The diffractive camera models reported in this paper 
were trained using the Adam optimizer [47] with a learn-
ing rate of 0.03. The batch size used for all the trainings 
was 60. All models were trained and tested using PyTorch 
1.11 with a GeForce RTX 3090 graphical processing unit 
(NVIDIA Inc.). The typical training time for a three-
layer diffractive camera (e.g., in Fig. 2) is ~ 21 h for 1000 
epochs.

4.4 � Experimental design
For the experimentally validated diffractive camera 
design shown in Fig. 7, an additional contrast loss Lc was 
added to Loss+ i.e.,

The coefficients (α1,α2,α3) were empirically set to (1, 3, 
5) and Lc is defined as:

where ε = 1e−6 was added to the denominator to avoid 
divide-by-zero error. Ĝ+ is a binary mask indicating the 
transmissive regions of the input object G+ , which is 
defined as:

By adding this image contrast related training loss term, 
the output images of the target objects exhibit enhanced 
contrast which is especially helpful in non-ideal experi-
mental conditions.
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(17)Ĝ+(m, n) =
{
1, G+(m, n) > 0.5
0, otherwise
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In addition, the MNIST training images were first lin-
early downsampled to 15 × 15 pixels and then upscaled 
to 90 × 90 pixels using nearest-neighbor interpolation. 
Then, the resulting input objects were augmented using 
the same parameters as described before and were fed 
into the diffractive camera for training. Each diffractive 
layer had 120 × 120 trainable diffractive neurons.

To overcome the challenges posed by the fabrication 
inaccuracies and mechanical misalignments during the 
experimental validation of the diffractive camera, we 
vaccinated our diffractive model during the training by 
deliberately introducing random displacements to the 
diffractive layers [41]. During the training process, a 3D 
displacement D =

(
Dx,Dy,Dz

)
 was randomly added to 

each diffractive layer following the uniform (U) random 
distribution:

where Dx and Dy denote the random lateral displace-
ment of a diffractive layer in x and y directions, respec-
tively. Dz denotes the random displacement added to the 
axial distances between any two consecutive diffractive 
layers. �∗,tr represents the maximum amount of shift 
allowed along the corresponding axis, which was set as 
�x,tr = �y,tr = 0.4  mm (~ 0.53� ), and �z,tr = 1.5  mm 
(2� ) throughout the training process. Dx,Dy , and Dz of 
each diffractive layer were independently sampled from 
the given uniform random distributions. The diffractive 
camera model used for the experimental validation was 
trained for 50 epochs.

4.5 � Experimental THz imaging setup
We validated the fabricated diffractive camera design 
using a THz continuous wave scanning system. The phase 
values of the diffractive layers were first converted into 
height maps using the refractive index of the 3D printer 
material. Then, the layers were printed using a 3D printer 
(Pr 110, CADworks3D). A layer holder that sets the posi-
tions of the input plane, output plane, and each diffrac-
tive layer was also 3D printed (Objet30 Pro, Stratasys) 
and assembled with the printed layers. The test objects 
were 3D printed (Objet30 Pro, Stratasys) and coated with 
aluminum foil to define the transmission areas.

The experimental setup is illustrated in Fig.  7a. The 
THz source used in the experiment was a WR2.2 mod-
ular amplifier/multiplier chain (AMC) with a com-
patible diagonal horn antenna (Virginia Diode Inc.). 
The input of AMC was a 10 dBm RF input signal at 

(18)Dx ∼ U
(
−�x,tr ,�x,tr

)

(19)Dy ∼ U
(
−�y,tr ,�y,tr

)

(20)Dz ∼ U
(
−�z,tr ,�z,tr

)

11.1111 GHz (fRF1) and after being multiplied 36 times, 
the output radiation was at 0.4  THz. The AMC was 
also modulated with a 1  kHz square wave for lock-in 
detection. The output plane of the diffractive camera 
was scanned with a 1 mm step size using a single-pixel 
Mixer/AMC (Virginia Diode Inc.) detector mounted 
on an XY positioning stage that was built by combin-
ing two linear motorized stages (Thorlabs NRT100). A 
10 dBm RF signal at 11.083 GHz (fRF2) was sent to the 
detector as a local oscillator to down-convert the signal 
to 1 GHz. The down-converted signal was amplified by 
a low-noise amplifier (Mini-Circuits ZRL-1150-LN+) 
and filtered by a 1  GHz (± 10  MHz) bandpass filter 
(KL Electronics 3C40-1000/T10-O/O). Then the sig-
nal passed through a tunable attenuator (HP 8495B) 
for linear calibration and a low-noise power detector 
(Mini-Circuits ZX47-60) for absolute power detection. 
The detector output was measured by a lock-in ampli-
fier (Stanford Research SR830) with the 1  kHz square 
wave used as the reference signal. Then the lock-in 
amplifier readings were calibrated into linear scale. A 
digital 2 × 2 binning was applied to each measurement 
of the intensity field to match the training feature size 
used in the design phase.
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